Клонирование человеческих тканей и органов. Забытое клонирование: почему о сенсации XX века не слышно в последнее время Общественный аспект: как социализировать клона


В октябре 2001 г. компании Advanced Cell Technology (АСТ, США) удалось впервые получить клонированный эмбрион человека, состоявший из 6 клеток. Этоозначает, чтоклонирование эмбрионов в медицинских целях (так называемое терапевтическое клонирование) уже не за горами.

Целью такогоклонирования является получение бластоцистов человека (полых сферических образований, состоящих примерноиз 100 клеток), которые содержат внутреннюю клеточную массу. После извлечения из бластоцистов внутренние клетки могут развиваться в культуре, превращаясь в стволовые клетки, которые, в свою очередь, могут превращаться в любые дифференцированные клетки человека: нервные, мышечные, кроветворные, клетки желез и т.д.

Медицинские применения стволовых клеток очень перспективны и необычайноразнообразны. Они могут использоваться, например, для лечения сахарногодиабета путем восстановления популяции погибших или поврежденных клеток поджелудочной железы, производящих инсулин. Их можноиспользовать и для замены нервных клеток при повреждениях головногоили спинногомозга. При этом не возникает опасности отторжения трансплантатов и прочих нежелательных осложнений, сопровождающих обычные операции попересадке клеток, тканей и органов.

В последнее время термин «терапевтическое клонирование» стали использовать и для обозначения клонирования эмбрионов, предназначенных для имплантации в матку женщины, которая затем может родить клонированногоребенка. Этооправдывают тем, чтотакое клонирование позволит иметь детей бесплодным парам. Однакоононе имеет отношения к лечению как таковому. Поэтому большинствоученых, занимающихся клонированием в медицинских целях, считают, чтовремя «репродуктивного» клонирования еще не наступило- предстоит решить еще множествосложнейших биологических, медицинских и этических проблем.

На объявление компании АСТ с просьбой предоставить материал для научных исследований в области клонирования откликнулось множествоженщин, из которых после тщательной проверки здоровья и психическогосостояния были отобраны 12 доноров. Интересно, чтобольшинствопотенциальных доноров заявили, чтоотказались бы участвовать в экспериментах порепродуктивному клонированию.

Донорам делали специальные инъекции гормонов, чтобы при овуляции выделялась не одна, а примерно10 яйцеклеток. В качестве источников ядер для пересадки в яйцеклетки использовали фибробласты. Фибробласты получали из биопсий кожи анонимных доноров, среди которых были больные сахарным диабетом, а также пациенты с повреждениями спинногомозга. После выделения фибробластов из них получали культуры клеток. клонирование яйцеклетка эмбрион медицина

В первых экспериментах были использованы ядра фибробластов. Однакопосле пересадки ядра яйцеклетка хоть и начинала делиться, нопроцесс быстрозавершался, и не образовывалось даже двух раздельных клеток. После ряда неудач американские исследователи решили использовать подход Т.Вакаямы и Р.Янагимачи (так называемый гавайский метод), с помощью которогобыла получена первая клонированная мышь.

Этот метод состоит в том, чтовместоядра соматической клетки (фибробласта) в яйцеклетку пересаживается целая овариальная клетка. Овариальные клетки обеспечивают питанием развивающуюся яйцеклетку и настолькопрочнос ней связаны, чтосохраняются на ее поверхности даже после овуляции. Эти клетки настолькомалы, чтовместоядра можноиспользовать целую клетку.

Однакои в этом случае возникли значительные трудности. Потребовалось более 70 экспериментов, прежде чем удалось получить делящуюся яйцеклетку. Из 8 яйцеклеток, в которые были введены овариальные клетки, две образовали четырехклеточный эмбрион, а одна - шестиклеточный. После этогоих деление прекратилось.

Партеногенетический подход основан на том, чтояйцеклетка становится гаплоидной не сразу, а на довольнопозднем этапе созревания. Если бы такую почти созревшую яйцеклетку удалось активировать, т.е. стимулировать к делению, можнобылобы получить бластоцист и стволовые клетки. Недостаток этогоподхода заключается в том, чтополученные стволовые клетки будут генетически родственны толькодонору яйцеклетки. Получить стволовые клетки для других людей таким способом невозможно- обязательнопотребуется пересадка ядер в яйцеклетку.

Ранее были удачные попытки активации яйцеклеток мышей и кроликов с помощью различных веществ или электрическоготока. Еще в 1983 г. Э.Робертсон получила стволовые клетки из партеногенетическогоэмбриона мыши и показала, чтоони могут формировать различные ткани, включая мышечную и нервную.

С человеческим эмбрионом все оказалось сложнее. Из 22 яйцеклеток, активированных химическим путем, только6 образовали через пять дней нечтопохожее на бластоцист. Однаковнутренней клеточной массы в этих бластоцистах не было…

Существуют три типа клонирования млекопитающих: эмбриональное клонирование, клонирование зрелой ДНК (репродуктивное клонирование, метод Рослина) и терапевтическое (биомедицинское) клонирование.

При эмбриональном клонировании клетки, образующиеся в результате деления оплодотворенной яйцеклетки, разделяются и продолжают развиваться в самостоятельные эмбрионы. Так можнополучать монозиготных близнецов, тройни и т.д. вплоть до8 эмбрионов, развивающихся в нормальные организмы. Этот метод давноиспользуется для клонирования животных различных видов, нопоотношению к человеку егоприменимость исследована недостаточно.

Био?медицинско?е кло?ниро?вание о?писано? выше. Оно? о?тличается о?т репро?дуктивно?го? кло?ниро?вания то?лько? тем, что? яйцеклетка с пересаженным ядро?м развивается в искусственно?й среде, затем из бласто?циста удаляют ство?ло?вые клетки, а сам пре-эмбрио?н при это?м по?гибает. Ство?ло?вые клетки мо?гут быть испо?льзо?ваны для регенерации по?врежденных или о?тсутствующих о?ргано?в и тканей в о?чень мно?гих случаях, о?днако? про?цедура их по?лучения по?ро?ждает мно?жество? мо?рально?-этических про?блем, и во? мно?гих странах зако?но?датели о?бсуждают во?змо?жно?сти запрещения био?медицинско?го? кло?ниро?вания. Тем не менее исследо?вания в это?й о?бласти про?до?лжаются, и тысячи неизлечимо? бо?льных (бо?лезнями Паркинсо?на и Альцгеймера, диабето?м, рассеянным склеро?зо?м, ревмато?идным артрито?м, рако?м, а также с травмами спинно?го? мо?зга) с надеждо?й ждут их по?ло?жительных результато?в.

Вы живете в мире, где можно клонировать животных, флиртовать с виртуальными девушками и играть с куклами-роботами, которых все сложнее отличить от человека. Вернувшись однажды домой с подарком для дочери, вы обнаружите копию самого себя. Вашего клона, который занял ваше место и отобрал вашу жизнь. Если первое предложение вполне вяжется с реальностью, то следующие - это завязка фильма «6-й день» с Арнольдом Шварценеггером. Чувствуете, как сочится эта грань между реальностью и фантастикой?

Коротко. О чем тут речь

В январе этого года ученые Китайской академии наук сообщили об успешном клонировании приматов тем же методом трансплантации ядер, которым была клонирована уже легендарная овечка Долли. Она умерла еще в 2003 году, и многие мои ровесники смотрели выпуски новостей об этом событии с нескрываемым удивлением, восторгом и толикой страха.

Клонированная овечка. Шутка ли! В подростковом сознании она превращалась в нечто сравнимое с инопланетным киборгом, восьмым чудом света в органической оболочке. Интернет ведь в те годы выдавался крайне ограниченными и дорогими порциями, а потому раскопать информацию о животном было нелегко, по телевизору же говорили довольно общо и смутно…

В общем, с тех пор наука не замерла над трупом клонированной овцы, ставшей мировой знаменитостью. Человечество продвинулось от экспериментов с головастиками до приматов и человеческих эмбрионов. Но обо всем по порядку.

Кто такие клоны?

Клоны получаются в результате клонирования, как бы удивительно это ни звучало. Начнем с того, что даже однояйцевых близнецов можно смело называть клонами, потому что развились они из одной и той же оплодотворенной яйцеклетки. Клонами являются и клетки многоклеточных организмов, и даже растения, которые получились в результате вегетативного (бесполого) размножения: черенками, клубнями, луковицами, корневищами и т. д. Это довольно древний инструмент селекции растений, благодаря которому мы питаемся сносными овощами и фруктами.

Но если с растениями все понятно, то человека или корову луковицей не размножишь. От своих родителей мы получаем по набору генов, наборы эти отличаются, так как папы с мамами у нас разные. А потому и мы получаемся не такими, как только папа или только мама. Каждый из нас уникален! С генетической точки зрения, конечно. И это замечательно: чем больше разных людей, тем шире разнообразие вида и тем сильнее он защищен от каких бы то ни было потрясений окружающей среды.

Как создать клона на примере овечки Долли

Долли родилась 5 июля 1996 года в Шотландии. Произошло это в лаборатории Яна Вилмута и Кита Кэмпбелла в Рослинском институте. Родилась она как самая обычная овца. Вот только мать ее на момент рождения уже давно была мертва. Долли есть пошла из ядра соматической клетки вымени своей генетической матери. Клетки эти были заморожены в жидком азоте. Всего было использовано 227 яйцеклеток, 10% которых по итогу доросли до состояния эмбрионов. Но выжить удалось только одному.

Он подрастал в теле своей суррогатной матери, в которую попал путем пересадки ядра клетки от донора в избавленную от ядра цитоплазму яйцеклетки своего будущего носителя. Двойной набор хромосом подопытная получила только от своей матери, чьей генетической копией и была.

Долли жила как нормальная овца. Правда, большую часть времени проводила взаперти и вдалеке от своих сородичей. Все-таки лабораторный экземпляр. К шести годам у овечки развился артрит, а затем и ретровирусное заболевание легких. Обычно эти животные живут до 10-12 лет, но Долли решили усыпить на полпути, что вызвало много кривотолков в медиа.

Некоторые ученые, как и СМИ, предполагали, что причиной ранней смерти овцы могло стать клонирование. Дело в том, что в качестве базового материала для Долли была выбрана клетка взрослой особи с уже укороченными теломерами. Это такие окончания хромосом, которые с каждым делением укорачиваются. Данный процесс называют одной из основных причин старения.

Но ладно, пускай ученым это удалось на какой-то из Земель в многочисленных параллельных вселенных. Что дальше? Как быть с яйцеклеткой? Где найти достаточно близкий по строению родственный вид, который сможет выносить будущих динозавров? И смогут ли они вообще существовать в условиях современной окружающей среды? Некоторые люди не терпят перестановку в комнате, а бедным динозаврам придется дышать воздухом, который на 21% насыщен кислородом вместо привычных миллионы лет назад 10-15%.

А потому поглядывать стоит на более близкие нам по временной линии виды. Например, последняя замечательная птица додо покинула этот жестокий мир еще в 17-м веке, но знают о ней даже школьники (не уверен, что сегодняшние). Всё благодаря карикатурному автопортрету Льюиса Кэрролла из «Алисы в Стране чудес».

Несколько экземпляров этой птицы в виде чучел сохранились в разных музеях. Сохранились также их мягкие ткани, а среди родственников значится никобарская голубка, которая и могла бы выносить потомство додо. Правда, пока все это лишь разговоры.

Среди известных, но, к сожалению, провальных попыток реанимировать умерший вид значится пиренейский козерог, который исчез относительно недавно - в 2000 году. В 2009-м родился его клон, который прожил всего семь минут.

Зачем мне нужен клон?

Пока в теории, но не всегда на практике обсуждаются два вида человеческого клонирования: терапевтическое и репродуктивное. Первый подразумевает клонирование клеток тех или иных тканей (не органов) в целях трансплантации. Полученные таким образом ткани не будут отторгаться организмом пациента, потому что являются по сути его собственными. Полезная вещь.

Как это работает? Берется клетка пациента, ядро которой пересаживается в цитоплазму (внутреннюю среду) яйцеклетки, уже лишившейся своего ядра. Эта яйцеклетка множится, развивается в ранний эмбрион пяти дней от роду. Затем в чашках Петри полученные стволовые клетки превращаются в ткани, необходимые ученым и медикам.

Кому может понадобиться репродуктивный клон? Людям, которые потеряли своих близких и хотят их таким образом вернуть? Но клоны не рождаются с нужным возрастом. Такое бывает разве что в научной фантастике.

Вопросы этики

У клонирования пока слишком много неразрешенных этических проблем. И работа с эмбрионами, пускай на самой ранней стадии их развития, приводит к волнам критики в адрес генетиков. В частности, со стороны религиозных организаций. Все-таки искусственное создание жизни и уподобление богам они одобрить не могут.

К тому же репродуктивное клонирование человека прямо запрещено во многих странах мира и грозит уголовной ответственностью. Да, отработанные на животных методики существуют и ученые не видят никаких препятствий к клонированию человека, кроме моральных. Однако проблема в том, что животные - не личности. Нет, я люблю и уважаю животных (не всех), но факт остается фактом: они встроены в нашу пищеварительную цепь. И никто не спрашивает у клона коровы ее мнения по поводу прожарки бифштекса.

Репродуктивное же клонирование человека предполагает, что он не будет простым набором органов, а за годы сформируется в личность, которая сможет коренным образом отличаться от оригинала (это, в частности, демонстрируют близнецы). И правовой статус клона будет неопределенным: какие у него вообще должны быть права и обязанности? Как он должен взаимодействовать со своим оригиналом? Для кого он будет внуком или наследником?

Что касается терапевтического клонирования, то оно также находится под запретом во многих странах мира. Хотя ради научных целей всегда могут сделать исключение.

Высказывалась о клонировании человека и ООН. Негативно. В Декларации о клонировании человека от 2005 года организация заявила, что применение достижений биологических наук должно служить облегчению страданий и укреплению здоровья личности и человечества в целом. Документ призывает запретить все формы клонирования людей в такой мере, в какой они несовместимы с человеческим достоинством и защитой человеческой жизни.

Несмотря на это, несмело, стыдливо, но неумолимо к изучению терапевтического клонирования приступает все больше научно-исследовательских институтов. Когда наступит время, человечеству все-таки придется взвесить все за и против, снять этические вопросы и решить моральные дилеммы. Потому что прогресс можно отсрочить, но не отменить.

Клонирование организмов

Клон – это точная генетическая копия живого организма.

В природе клоны широко распространены. Это, конечно же, потомки . Так как полового процесса не происходит, не изменяется . Поэтому дочерний организм является точной генетической копией предыдущего .

Клоны так же создаются с участием человека. Зачем это делается? Представьте, ведется многолетняя работа по отбору и гибридизации растений, из всех полученных гидридов, у одного очень удачная комбинация генов (например, сочные плоды больших размеров). Как размножить это растение? Если проводить скрещивание, то произойдет рекомбинация генов. Поэтому проводят .

Многие культурные сорта являются клонами изначально полученного растения. (Фиалки, например, размножают листьями). Можно даже получить клон растения всего из одной клетки.

  • сначала выращивается культура клеток ,
  • потом воздействуют нужными гормонами для дифференцировки тканей , и
  • воссоздается новый организм.

С помощью этого метода можно будет получать больше урожая, чем через стандартное разведение. Возможно, в будущем мы будем получать растительные продукты не с полей, а из пробирок.

Огромные площади земли заменит лаборатория. А колхозники останутся без работы.

Но как создавать клоны организмов, неспособных к бесполому размножению (позвоночных к примеру)?

Это возможно. Такое явление встречается даже в природе. Это – .

Из одной зиготы развивается не один организм, при том эти организмы являются генетическими копиями друг друга (так как развились из одной зиготы).

Такое явление позволило возникнуть близнецовому методу (благодаря ему, изучается влияние наследственности и среды на признаки).

Появилась идея искусственного клонирования организмов .

В теории она проста: если из зиготы удалить собственное , и поместить ядро из соматической клетки, то разовьется организм – точная генетическая копия, клон донора соматической клетки.

Практически осуществить это получилось не сразу.

В 60-е года были проведены опыты по клонированию . Из икринок лягушек вытаскивали ядра и засовывали ядра, взятые из соматических клеток (метод такой пересадки ядер, между прочим, был разработан у нас в СССР в 1940 году ученым Г.В. Лопашовым). Получились клоны лягушки. С амфибиями проще, у них оплодотворение и эмбриональное развитие происходит во внешней среде.

Как быть с ?

Икру то они не метят. В 1996 году группа британских ученых (это не фигура речи, они действительно из Британии) под руководством Иэна Уилмута сделала огромное достижение в области биологии. Они, с помощью метода пересадки ядра, клонировали овцу.

Из клетки ткани вымени уже умершей к моменту эксперименту овцы (организма-прототипа) взяли ядро. Из другой овцы взяли яйцеклетку и, предварительно удалив ее собственное ядро, трансплантировали ядро из клеток овцы-прототипа. Полученную уже диплоидную клетку (диплоидную, так как ядро взято из соматической клетки) поместили в другую овцу, которая стала суррогатной матерью. Полученного ягненка назвали Долли.

Она была генетической копией овцы-прототипа.

Но Долли не была первым в истории клоном млекопитающего. И до нее проводились удачные эксперименты. В чем новшество? В том, что ранее брались либо эмбриональные, либо стволовые клетки для донорства ядер. В случае с Долли были взяты уже дифференцированные клетки взрослого организма (клетки вымени). Овечка Долли прожила достойную жизнь, несколько раз становилась мамой. Рожала совершенно здоровых ягнят. Долли ничем не отличалась от других овец, только тем, что она являлась клоном. К концу жизни Долли заболела артритом. Ее усыпили. Болезнь эта никаким образом не связана с клонированием: ей болеют и обычные овцы.

Эксперимент с Долли продемонстрировал возможность и безопасность клонирования млекопитающих.

Какова практическая значимость клонирования? Оно позволяет решить некоторые проблемы:

  • можно увеличить численность — спасти от вымирания популяции, которые сами уже не могут поддерживать свою численность и, по сути, обречены;
  • клонирование дает возможность в прямом смысле воскресить вымершие виды, если сохранились образцы ядер клеток этих организмов (вспомните Парк Юрского периода);
  • не обязательно выращивать целиком новый организм. Можно выращивать отдельно органы и заменять ими поврежденные. У человека отказала . Взяли у него одну клетку – вырастили новую. И отторгаться она не будет , так как не содержит чужеродных белков: все свое.


В теории все прекрасно, на практике возникают некоторые проблемы.

Прежде всего, это чисто «механические» проблемы. Несовершенство методов. Белые пятна, пробелы в знаниях: не все еще известно о генах и всех их тонкостях.

Еще одна проблема скрыта в ядре. В процессе дифференциации клеток происходит и дифференциация ядер этих клеток: некоторые гены отключаются, некоторые активируются. То есть в ядре, взятом для пересадки в яйцеклетку, могут быть отключены некоторые гены, которые необходимы для нормального развития зародыша. Понятно, что в этом случае нормального развития не получится.

Есть проблема этическая — клонирование человека. Сути ее я не понимаю, лично мне она кажется надуманной. Поэтому комментировать ее не буду.

Последняя проблема, которую мы рассмотрим – это проблема старения ядер. В ядрах есть счетчики старения организма – теломеры. С каждым делением они все короче и короче. Очевидно, нужен способ искусственно «сбросить до заводских настроек» ядро: отменить отключение генов, восстановить теломеры.

На клонирование организмов возлагаются огромные надежды. В этом методе видят излечение болезней . Область открыта для исследований: еще многое нужно изучить.

С момента изобретения термина «клон» в 1963 году генная инженерия пережила несколько колоссальных скачков: мы научились извлекать гены, разработали метод полимеразной цепной реакции, расшифровали геном человека и клонировали ряд млекопитающих. И все же, на человеке эволюция клонирования остановилась. С какими этическими, религиозными и технологическими проблемами она столкнулась? Т&P изучили историю создания генетических копий, чтобы понять, почему мы до сих пор не клонировали себя.

Слово «клонирование» (англ. «cloning») происходит от древнегреческого слова «κλών» - «веточка, отпрыск». Этот термин описывает целый ряд разнообразных процессов, которые позволяют создать генетическую копию биологического организма или его части. Внешний вид такой копии может отличаться от оригинала, однако с точки зрения ДНК она всегда полностью ему идентична: группа крови, свойства тканей, сумма качеств и предрасположенностей остаются теми же, что и в первом случае.

История клонирования началась больше ста лет назад, в 1901 году, когда немецкому эмбриологу Хансу Шпеману удалось разделить двухклеточный зародыш саламандры пополам, и вырастить из каждой половины полноценный организм. Так ученым стало известно, что на ранних стадиях развития необходимый объем информации содержит каждая клетка эмбриона. Год спустя другой специалист, генетик из США Уолтер Саттон предположил, что эти сведения находятся в клеточном ядре. Ханс Шпеман принял эту информацию к сведению и через 12 лет, в 1914 году, успешно провел опыт по пересадке ядра из одной клетки в другую, а спустя еще 24 года, в 1938 году, предположил, что ядро можно пересадить в безъядерную яйцеклетку.

Затем развитие клонирования практически остановилось, и только в 1958 году британскому биологу Джону Гердону удалось успешно клонировать шпорцевую лягушку. Для этого он использовал неповрежденные ядра соматических (не принимающих участие в размножении) клеток организма головастика. В 1963 году другой биолог, Джон Холдейн впервые использовал термин «клон», описывая работы Гердона. Тогда же китайский эмбриолог Тун Дичжоу провел эксперимент по переносу ДНК взрослого карпа-самца в икринку женской особи и получил жизнеспособную рыбу, - а заодно и звание «отца китайского клонирования». После этого было проведено несколько успешных экспериментов по клонированию живых организмов: моркови, выращенной из изолированной клетки (1964 год), мышей (1979 год), овцы, чей организмы был создан из эмбриональных клеток (1984 год), двух коров, «рожденных» из дифференцированных клеток однонедельного эмбриона и клеток зародыша (1986 год), еще двух овец по кличке Меган и Мораг (1995 год) и, наконец, Долли (1996 год). И все же, для ученых Долли стала скорее вопросом, чем ответом на вопрос.

Медицинские проблемы: аномалии и «старые» теломеры

Именно Долли на сегодняшний день принадлежит звание самого знаменитого клона в истории дисциплины. Ведь она была создана на основе генетического материала взрослой особи, а не зародыша или эмбриона, как ее предшественницы и предшественники. Однако источник ДНК, согласно предположением ряда ученых, стал для клонированной овцы проблемой. Концы хромосом в организме Долли - теломеры - оказались такими же короткими, как и у ее ядерного донора - взрослой овцы. За длину этих фрагментов в организме отвечает специфический фермент - теломераза. В случае со взрослым организмом млекопитающего она, чаще всего, активна только в половых и стволовых клетках, а также в клетках лимфоцитов в момент иммунного ответа. В тканях, состоящих из такого материала, хромосомы постоянно удлиняются, а вот во всех остальных - укорачиваются после каждого деления. Когда хромосомы достигают критической длины, клетка перестает делиться. Вот почему теломераза считается одним из главных внутриклеточных механизмов, который регулирует продолжительность жизни клеток.

Сегодня нельзя сказать точно, стали ли «старые» хромосомы Долли причиной ее ранней для овец кончины. Она прожила 6,5 лет, что составляет чуть больше половины обычной для этого вида продолжительности жизни.

Специалистам пришлось усыпить Долли, поскольку у нее развился вызванный вирусом аденоматоз (доброкачественные опухоли) легких и тяжелый артрит. Обыкноывенные овцы тоже нередко страдают этими заболеваниями, но чаще в конце жизни, так что исключать влияние длины теломер Долли на деградацию тканей, очевидно, нельзя. Ученым, которые хотели проверить гипотезу о «старых» теломерах клонированных живых существ, не удалось ее подтвердить: искусственное «состаривание» ядер клеток молодого теленка путем их длительного культивирования в пробирке после рождения его клонов дало совершенно противоположный результат: длина теломер в хромосомах новорожденных телят сильно увеличилась и даже перегнала нормальные показатели.

Теломеры клонированных животных могут оказаться короче, чем у их обыкновенных собратьев, однако это не единственная проблема. Большая часть эмбрионов млекопитающих, полученных путем клонирования, погибает. Момент рождения тоже является критическим. Новорожденные клоны часто страдают гигантизмом, умирают от респираторного дистресса, дефектов развития почек, печени, сердца, мозга, а также отсутствия в крови лейкоцитов. Если животное все-таки выживает, нередко к старости у него развиваются другие аномалии: например, клонированные мыши в преклонном возрасте часто страдают ожирением. Тем не менее, потомство клонированных теплокровных существ не наследует пороков их физиологии. Это позволяет говорить о том, что изменения ДНК и хроматина, которые могут возникать при пересадке донорского ядра, являются обратимыми и стираются, когда геном проходит через зародышевый путь: ряд поколений клеток от первичных половых клеток зародыша до половых продуктов взрослого организма.

Общественный аспект: как социализировать клона

Клонирование не позволяет полностью повторить сознание человека, ведь далеко не все в процессе его формирование обусловлено генетикой. Вот почему о полной идентичности донорской и клонированной личности речи идти не может, а потому практическая ценность клонирования в действительности намного ниже, чем то, как традиционно видят ее в своем сознании писатели- и режиссеры-фантасты. И все же, сегодня в любом случае остается неясным, как создать для клонированного человека место в обществе. Какое имя он должен носить? Как в его случае оформить отцовство, материнство, брак? Как решать правовые вопросы имущества и наследования? Очевидно, воссоздание человека на основе донорского генетического материала потребовало бы появления особой общественной и правовой ниши. Ее возникновение изменило бы ландшафт привычной системы семейных и социальных отношений намного сильнее, чем, к примеру, регистрация однополых браков.

Религиозный аспект: человек в роли Бога

Представители крупнейших религий и конфессий выступают против клонирования человека. Папа Римский Иоанн Павел II, который был предстоятелем Римско-католической церкви с 1978 по 2005 год, сформулировал ее позицию так: «Путь, указанный Христом, - это путь уважения человека, и любые исследования должны иметь целью познание его в его истинности, чтобы потом служить ему, а не манипулировать им в соответствии с проектом, который иногда высокомерно считается лучшим, чем проект самого Создателя. Для христианина тайна бытия настолько глубока, что она неисчерпаема для человеческого познания. Человек же, который с самонадеянностью Прометея возносит себя до арбитра между добром и злом, превращает прогресс в собственный абсолютный идеал и впоследствии бывает раздавлен им. Прошедший век с его идеологиями, которыми печально отмечена его трагическая история, и войнами, избороздившими его, стоит перед глазами всех как демонстрация результата такой самонадеянности».

Патриарх Русской православной церкви Алексий II, занимавший этот пост с 1990 по 2008 год, выступил против экспериментов по генетическому воссозданию человека еще жестче. «Клонирование человека - аморальный, безумный акт, ведущий к разрушению человеческой личности, бросающий вызов своему Создателю», - заявил патриарх. Далай-лама XIV также высказывался в отношении экспериментов по генетическому воссозданию человека с опаской. «Что касается клонирования, то, как научный эксперимент, оно имеет смысл, если принесет пользу конкретному человеку, но если применять его сплошь и рядом, в этом нет ничего хорошего», - заявил буддийский первосвященник.

Опасения верующих и служителей церкви вызывает не только тот факт, что в подобных экспериментах человек заступает за рамки традиционных способов воспроизведения своего вида и, по сути, берет на себя роль Бога, но и то, что даже в рамках одной попытки клонирования тканей с использованием эмбриональных клеток должно быть создано несколько зародышей, большая часть из которых погибнет или будет умерщвлена. В отличие от процесса клонирования, который предсказуемо не упоминается в Библии, о зарождении жизни человека в канонических христианских текстах информация есть. Псалом Давида 138:13-16 говорит: «Ибо Ты устроил внутренности мои и соткал меня во чреве матери моей. Славлю Тебя, потому что я дивно устроен. Дивны дела Твои, и душа моя вполне сознает это. Не сокрыты были от Тебя кости мои, когда я созидаем был в тайне, образуем был во глубине утробы. Зародыш мой видели очи Твои; в Твоей книге записаны все дни, для меня назначенные, когда ни одного из них еще не было». Это утверждение богословы традиционно трактуют как указание на то, что душа человека возникает не в момент его появления на свет, а раньше: между зачатием и рождением. Из-за этого уничтожение или гибель эмбриона может рассматриваться как убийство, а это противоречит одной из библейских заповедей: «Не убий».

Польза клона: воссоздавать органы, а не людей

Клонирование биологического материала человека в ближайшие десятилетия, тем не менее, может все-таки оказаться полезным и лишиться, наконец, своей «криминальной» мистической и этической составляющей. Современные технологии сохранения пуповинной крови позволяют брать из нее стволовые клетки для создания органов для пересадки. Такие органы идеально подходят человеку, поскольку несут в себе его собственный генетический материал и не отторгаются организмом. При этом для такой процедуры нет необходимости воссоздавать зародыш. Эксперименты для развития подобной технологии уже проводились: в 2006 году британским ученым удалось вырастить небольшую печень из клеток пуповинной крови зачатого и рожденного обычным способом младенца. Это произошло спустя несколько месяцев после его появления на свет. Орган получился небольшим: всего 2 см в диаметре, - однако его ткани были в порядке.

Тем не менее, сегодня более известны формы терапевтического клонирования, которые предполагают создание бластоцисты: эмбриона ранней стадии развития, состоящего из порядка 100 клеток. В перспективе бластоцисты, разумеется, являются людьми, так что их использование нередко вызывает такие же споры, как и клонирование с целью получения живого человека. Отчасти именно поэтому сегодня все формы клонирования, включая терапевтическое, во многих странах официально запрещены. Воссоздание человеческого биоматериала в терапевтических целях разрешается только в США, Индии, Великобритании и некоторых частях Австралии. Технологии сохранения пуповинной крови сегодня используются нередко, однако пока ученые рассматривают ее лишь как потенциальное средство борьбы с диабетом I типа и сердечнососудистыми заболеваниями, а не как возможный ресурс для создания органов для трансплантации.