КТ или МРТ: выбираем лучший метод аппаратной диагностики. Рентгеновская компьютерная томография Для получения изображения в компьютерной томографии используется


Правильно поставленный диагноз – наполовину вылеченная болезнь. Лекари древности определяли заболевания необычными методами: по глазам, ногтям, цвету кожи и другим признакам. Да и сегодня опытный врач многое скажет о пациенте, впервые его увидев. Многое, но не все. Возможности современной медицины значительно выросли, появились новые методы диагностики, позволяющие заглянуть внутрь человеческого организма и визуально оценить степень поражения того или иного органа. Компьютерная томография − один из таких методов.

Что это такое?

Как только были открыты рентгеновские лучи, люди научились получать изображения органов человека. Нельзя сказать, что эти снимки идеальны. Рентгенография не позволяет разглядеть небольшие очаги нарушений, так как происходит накладывание тканей одна на другую. Метод линейной томографии, с помощью которого получают изображение определенного слоя органа, также далек от совершенства.

И только с изобретением метода КТ начался прорыв в диагностике. За это открытие ученые Кормак и Хаунсфилд были удостоены Нобелевской премии. В арсенале медицинских работников появилась возможность увидеть множество срезов органа в разных местах. Точность и скорость исследования повысилась благодаря внедрению спиральной технологии. А современная многосрезовая методика позволяет сделать до 64 изображений различных слоев органа (уже есть сведения о появлении 320-срезового томографа).

Как проходит?

Установка КТ довольно массивная. Представляет собой кольцо, которое может вращаться с испусканием рентгеновских лучей. Человека, лежащего на специальном столе, помещают внутрь кольца. Сканер, вращаясь вокруг него, слой за слоем изучает исследуемый орган. При спиральной томографии стол с пациентом также движется. В этом есть что-то из мира космической фантастики, не так ли?

Все изображения можно распечатать. Процедура КТ проходит с контрастированием. Контрастное вещество (йодсодержащее) используется для лучшей визуализации изображения. Дело в том, что рентгеновские лучи определенных характеристик почти не видят мягкие ткани. Контрастное вещество вводят в вену, а в отдельных случаях пациент его просто выпивает.

С помощью метода компьютерной томографии исследуются практически все органы человеческого тела: сердце, сосуды, почки, легкие, головной и спинной мозг, мочевой пузырь, брюшная полость, кости. Что-то забыли упомнить? И это тоже исследуется!

Почему КТ?

  • Компьютерная томография сосудов, используя рентгеновское излучение, позволяет увидеть артерии и вены в любой части человеческого тела.
  • Получают изображение патологического участка сосуда, находящегося в самом неудобном для других методов исследования месте.
  • Возможно предоставление подробного трехмерного изображения всего сосудистого бассейна.
  • Есть возможность увидеть не только сосуды, но и прилегающие ткани, что является существенным плюсом в диагностике.
  • КТ сосудов сердца и других органов безопасна для большинства пациентов.
  • Процедура КТ отличается небольшой инвазивностью.

Кому противопоказана процедура КТ?

  1. Аллергическим больным.
  2. Пациентам с тяжелой почечной недостаточностью.
  3. Людям, у которых есть патология щитовидной железы. Дело в том, что йод, содержащийся в контрастном веществе, усиливает выработку тиреоидных гормонов, а это может привести к осложнениям.
  4. Запрещена КТ беременным женщинам. Во-первых, контрастное вещество может оказать токсическое действие на плод. Во-вторых, влияние рентгеновских лучей также небезопасно для ребенка.

Видео: процесс проведения компьютерной томографии

КТ сосудов

Причина заболевания органов может заключаться в заболевании сосудов. Ведь по ним движется кровь, обеспечивающая кислородом клетки всего организма. Закупорка тромбами, атеросклеротическими бляшками, – все это приводит к нарушению кровотока и, как следствие, повреждению соответствующего органа. С помощью метода компьютерной томографии можно исследовать сосуды любой части тела. К примеру, изучить состояние коронарных вен и артерий можно с помощью КТ коронарных сосудов. А КТ сосудов головы и шеи исследует мозговое кровообращение.

Томография сосудов показана, если у пациента наблюдаются:

  • Признаки хронических и острых нарушений и (в том числе головы): боли, отеки, онемение и другие;
  • Эмболии, ;
  • Ангиопатии разного происхождения;
  • Патологии в развитии сосудов;
  • и другие.

Большинство пациентов могут пройти исследование без вреда для здоровья. Но все-таки некоторым процедура не показана. В основном людям, для которых может стать опасным контрастное вещество (в частности, йод) или рентгеновское излучение.

КТ головного мозга

Если обычная рентгенография предоставляет обзорный снимок мозга, то КТ «фотографирует» мозг послойно. Расстояние между слоями около 1 мм. В результате доктор получает необходимое количество изображений, позволяющих заглянуть в любую точку органа. С помощью КТ головного мозга можно рассмотреть его структуру, увидеть , оценить состояние венозных и артериальных сосудов.

Чтобы изображение слоев мозга было более четким, как и в случае с периферическими сосудами, вводится контрастное вещество. Что касается противопоказаний, они такие же, как и при томографии сосудов. Единственное отличие: беременным иногда все-таки проводят исследование, но предварительно область матки прикрывают фартуком из свинца. Детям томографию сосудов головного мозга проводят по очень серьезным показаниям. Если женщина кормит грудью, то перерыв в кормлении должен быть не менее 48 часов. За это время контрастное вещество выведется из организма полностью.

Исследование назначают, если у человека наблюдаются:

  • Обмороки;
  • Потеря памяти;
  • Невнятная речь;
  • Судороги;
  • Ухудшение зрения;
  • Признаки, указывающие на повреждение мозга;
  • Подозрение на опухоли или метастазы;
  • Предоперационное определение локализации и размеров образований;
  • Черепно-мозговые травмы;
  • Инсульт (оба вида – и );
  • Подозрение на ;
  • Менингит;

Подготовка к исследованию также минимальная. Рекомендуется в течение 6 часов перед процедурой не есть. Из напитков разрешается только чистая вода.

Важно! При выполнении компьютерной томографии голова пациента должна находиться в абсолютно неподвижном состоянии. Малейшее движение сильно искажает показания.

Что «расскажет» КТ о мозге?

С помощью компьютерной томографии можно обнаружить:

  1. Кровоизлияния;
  2. Опухоли;
  3. Гематомы любой локализации;
  4. Отек и степень его выраженности;
  5. Смещение структур мозга;
  6. Кисты;
  7. Воспалительные заболевания;
  8. Присутствие гнойных выделений между оболочками.

КТ таза и брюшной полости

Процедура помогает диагностировать причину болевых ощущений в брюшной полости, тазе, определить патологии внутренних органов.

Основные показания:

  • Камни в почках и мочевом пузыре;
  • Панкреатит;
  • Пиелонефрит;
  • Язвенный колит;
  • Тромбозы сосудов брюшной полости ( , ).
  • Цирроз печени;
  • Аппендицит;
  • Абсцессы;
  • Опухоли внутренних органов, ;
  • , стенозы.

КТ брюшной полости нужна для:

  1. Оценки состояния внутренних органов после травмы;
  2. Правильного управления радиотерапией при опухолях и мониторинге состояния после химиотерапии;
  3. Оценки послеоперационных последствий при трансплантации органов и желудочном шунтировании;
  4. Руководства малоинвазивными методами лечения опухолевидных заболеваний.

Подготовка к процедуре

  • Одежда должна быть удобной. В некоторых клиниках предлагают на время обследования халат.
  • Так как металлические предметы способны исказить данные исследования, рекомендуется их устранить. Это могут быть ювелирные украшения, заколки, зубные протезы, слуховой аппарат, очки, пирсинг, бюстгальтер с металлическими косточками. Необходимо сообщить специалисту об имеющемся кардиостимуляторе. При выполнении некоторых условий это может не препятствовать обследованию.
  • Рекомендуется несколько часов не есть перед исследованием.
  • Необходимо предупредить врача об аллергических реакциях и принимаемых лекарственных препаратах.
  • Заболевания почек, диабет, проблемы со щитовидной железой также увеличивают возможность возникновения побочных эффектов.
  • Еще очень важно предупредить доктора о беременности или о подозрении на беременность. Почти для всех видов КТ беременность является абсолютным противопоказанием.

Томография сердца

Сердце сравнивают с мотором. Из-за неустанной работоспособности или в связи с его важностью для организма. Нарушения в работе сердца приводят к перебоям в кровоснабжении всех органов и тканей. Поэтому диагностика заболеваний «мотора» особенно важна.

Что можно определить?

  • Причину ;
  • Состояние сосудистых стенок;
  • Проблемы с клапанами;
  • Опухоли сердца ( и др.);
  • Кальцификацию коронарных артерий;
  • Причины болей;
  • Начало изменений миокарда и коронарных сосудов.

Что особенного в проведении КТ сердца?

Фотографы знают, что получить качественный снимок движущегося объекта практически невозможно. Поэтому всегда просят «замереть». А ведь сердце не остановишь. В связи с этим придумали гениальную методику: камера, которая снимает срезы сердца, перемещается синхронно с движением органа . Важно, чтобы пульс пациента не был ускоренным. Но как бы больной не успокаивал себя, волнение все равно присутствует во время любой процедуры, даже такой безболезненной. Поэтому томография сердца и сосудов предполагает прием бета-адреноблокаторов для снятия . Иногда лекарства вводят непосредственно в сосуд перед процедурой. Чтобы получить максимально правдивые результаты, пациента просят задержать дыхание.

Томография грудной клетки

С помощью КТ грудной клетки определяют на ранних стадиях ряд легочных патологий. Обычно КТ легких проводится после рентгенографического исследования.

Возможности КТ при исследовании легких

  • Выявляются ранняя пневмония, рак, туберкулез, эмфизема, ;
  • Измеряется дыхательный объем;
  • Можно провести анализ плотности легких;
  • Возможна диагностика профессиональных заболеваний, связанных с поступлением в легкие кремния, кварца, асбеста;
  • Выявляются заболевания внутригрудных лимфатических узлов, трахей, бронхов.

При томографии легких также применяются контрастные вещества. Особой подготовки исследование не требует.

Видео: компьютерная томография в сюжете “1 канала”

Так что же − КТ или МРТ?

Многие пациенты теряются: какому методу исследования отдать предпочтение? Сравним две наиболее популярные методики: КТ и .
МРТ и КТ отличаются технологически. Компьютерная томография основана на использовании рентгеновского излучения. Поэтому для нее характерен тот же недостаток, что и для других рентгеновских методик – лучевая нагрузка. Хотя в томографах нового поколения ее удалось максимально снизить, КТ все-таки противопоказана определенной категории пациентов. Да и большой участок (например, весь позвоночник) обследовать невозможно из-за передозировки излучения.

В основе МРТ – магнитные волны. Этот метод более безопасный. Его рекомендуют даже детям и беременным.

«Видят» методы тоже по-разному. МРТ прекрасно справляется с диагностикой патологий головного и спинного мозга, но слабо различает полые органы : мочевой пузырь, легкие, желчный пузырь. С помощью этого метода можно исследовать почки, суставы, селезенку, печень. МРТ неплохо «берет» связки, мышцы, глазное яблоко.

Компьютерная томография применяется для диагностики заболеваний внутренних органов. С ее помощью на 100% можно выявить нарушение мозгового кровообращения, раннюю стадию инсульта. Высокая информативность у исследования поджелудочной железы. Хорошо распознаются опухоли, внутренние кровотечения. Любой рентген прекрасно видит кости. Поэтому метод незаменим при костных травмах.

аппарат для проведения МРТ внешне очень похож на установку для рентгеновской КТ, но имеет более длинный “тоннель” и совершенно другой принцип действия

Процедура МРТ более комфортна для пациентов, при ее проведении даже не нужно раздеваться. Аппараты нового поколения (открытого типа) не вызывают приступы клаустрофобии для отдельных категорий больных.

На результаты исследования МРТ влияет металл, находящийся в любом месте организма: зубные протезы, брекеты, кардиостимулятор, штифты, скобы, электронные приспособления во внутреннем ухе, импланты. Все эти «штучки» могут стать абсолютным противопоказанием для проведения исследования.

Средняя стоимость КТ одного участка в Москве 2 500 – 3 500 рублей, а МРТ – от 4 500 до 5 000 в той же валюте. Цена зависит от оборудования клиники. Более дорогая процедура, скорее всего, проводится на аппарате большей мощности. Пациентам, имеющим полис ОМС, можно пройти эти исследования бесплатно, но очередь такая, что при некоторых заболеваниях ее можно просто не дождаться.

Важно! Какими бы не были отличия КТ от МРТ и цены на процедуры, врач индивидуально для каждого пациента подбирает наиболее подходящий метод исследования.

Видео: сравнение КТ и МРТ

На ваш вопрос ответит один из ведущих .

В данный момент на вопросы отвечает: А. Олеся Валерьевна, к.м.н., преподаватель медицинского вуза

Введение

В 1895 г. научное сообщество было потрясено первым медицински рентгеновским снимком. Эти посредственного качества рентгенограмм позволяли увидеть ранее невидимые для человеческого глаза структур, Первые рентгеновские снимки вызвали революционное развитие рентгенологии как важнейшего метода медицинской диагностики. Врачи, физики, биологи, химики объединились ради общей цели - возможности получав высококачественное прижизненное изображение органов и тканей человека для ранней диагностики различных заболеваний человека.

За последние годы современная технология получения медицински) изображений пошла значительно дальше рутинного рентгеновского мето­да. Рассматриваемые в этой книге технические и методологические прин-ципы являются основой учения о формировании компьютерно-томографи-ческого (КТ) изображения при различных клинико-диагностических ситуациях. На этих принципах базируются все другие, дополнительные методи­ки визуализации в компьютерной томографии, являясь их производными.

Известно, что чем больше мы познаем, тем больше осознаем, как много непознанного еще остается. Не существует простого решения проблемы по­лучения качественных медицинских изображений. Чем глубже становится на ше представление о физическо-математических принципах, лежащих в осно­ве формирования КТ-изображения, тем полнее осознание практической не­возможности создания «идеального» изображения при различных состояни­ях пациента. Сама аппаратно-техническая сущность оборудования и материалов, используемых для визуализации, требует компромиссного ме­тодологического подхода для получения КТ-изображения. Имеющийся в на­личии аппаратно-технический ассортимент следует рассматривать как некое «меню» возможностей, из которого следует выбирать наиболее подход? дие технические и материальные средства решения конкретной задачи.

Совмещая в повседневной практике деятельность врача и специалиста в области КТ-визуализации, мы должны так использовать все имеющиеся современные технические возможности, чтобы обеспечить получение опти­мально информативного диагностического изображения при минимальных времени обследования и лучевой нагрузке на пациента. Поэтому всюду где это возможно, важнейшие положения текста сопровождаются соответству­ющими рисунками, схемами и таблицами.

Целью данной книги является стремление дать специалисту по визуали­зации знания, помогающие принимать квалифицированные решения, кото­рые обеспечат высокоинформативное КТ-изображение при минимальном облучении пациента.

Эта книга написана, исходя из практических и образовательных потребнос­тей врачей, рентгенолаборантов, студентов медицинских институтов и медико-технических факультетов, а также других работников здравоохранения.

Технологические основы рентгеновской компьютерной томографии

Диагностика заболеваний внутренних органов всегда представляла большой интерес для врача. Длительное время для постановки диагно­за основой были рентгеновские снимки, дополненные по показаниям продольной томографией и рентгеноскопией. С момента начала приме­нения рентгеновских лучей в диагностическом процессе прошло более 100 лет. За этот период в классической рентгенологии был накоплен ко­лоссальный опыт их применения. Однако недостаточно высокие для современных требований точность, чувствительность и специфичность общерентгенологического метода (связанные как с самой рентге­новской пленкой, так и способом получения изображения) оставались серьезным препятствием для ранней диагностики заболеваний органов

и систем человека.

Научно-технический прогресс способствовал появлению принци­пиально новых методов лучевой диагностике, таких, как компьютерная томография (КТ), сонография, сцинтиграфия, ангиография, магнитно-резонансная томография с возможностью спектроскопии. Из этих нап­равлений наиболее революционным достижением в развитии рентгено­логии стало появление нового быстроразвивающегося метода - полу­чение изображения органов и тканей по данным измерения степени поглощения рентгеновского излучения объектом исследования, полу­чившего название рентгеновская компьютерная томография (РКТ).

Впервые методику определения рентгенологической плотности объ­ектов с использованием движущейся рентгеновской трубки предложил нейрорентгенолог W. Oldendorf (1961). Математические принципы реко­нструкции изображения были разработаны Frank (1918) и Cormarck П969). Первые томографические изображения головного мозга были получены инженером английской фирмы электромузыкальных инстру­ментов (EMI) G. Hounsfield, который создал первый прототип рентгеновского компьютерного томографа. Результаты первых экспериментов исследовании структур головы были настолько оптимистичны, что в августе 1970 г. он приступил к работе по изготовлению прототипа аппарата для клинического применения. В 1971 г. была создана установка сканирования, получившая название EMI-Scaner. Эта установка представляла сложную механико-электрическую рентгеновскую систе­му, основанную на принципе линейно вращательного движения блока «рентгеновская трубка - детектор полученного излучения» вокруг стола с пациентом. С пульта управления EMI-Scaner цифровые данные иссле­дования направлялись в специализированный вычислительный центр в котором в течение 6 ч производилась обработка информации. Тогда же, в 1971 г., EMI-Scaner был установлен в английском госпитале «Аткин сон Морли», где 4 октября было выполнено первое в мире КТ-исследо вание головного мозга человека в условиях медицинского учреждения И уже весной 1972 г. были опубликованы первые результаты клиничес­кого применения компьютерной томографии для диагностики заболе­ваний головного мозга.

Развитие электронно-вычислительной техники позволило в 1973 отказаться от отдельно стоящего сложного вычислительного комплекса и оснастить EMI-Scaner встроенным специализированным процессо­ром (аппарат II поколения), что не только сократило время обследова­ния пациента, но и позволило создать модель компьютерного томогра­фа для обследования органов и тканей всего тела. Время сбора данных с последующим преобразованием их в КТ-изображение составляло 4,5 мин на один КТ-срез. Эта система стала базовой для последующих поколений компьютерных томографов.

На рис. 1 схематически показан принцип действия аппарата III поко­ления, основанный на вращении жестко связанной между собой систе­мы «рентгеновская трубка - система детекторов» вокруг поступательно двигающегося стола с пациентом.

Преимущества компьютерной томографии в сравнении с рентгенографией:

1. КТ-изображение непосредственно не связано с принятым излучением, являясь результатом измерений показателей ослабления излучения только выбранного слоя.

2. Картина среза органа не имеет теней, содержащихся в других слоях.

3. Результаты представляются в цифровой форме в виде распреде­ления коэффициентов ослабления излучения.

4)Исследование тканей, незначительно различающихся между собой по поглощающей способности.

Присуждение Нобелевской премии по медицине (1979) G. Hounsfield и A. Cormarck за внедрение КТ в практику стало высшим признанием значения метода. Изображение, получаемое при КТ, значительно отли­чается от привычного рентгеновского снимка. Основное достоинство этого метода исследования в том, что КТ-изображение является резуль­татом измерений показателей ослабления излучения коллимированного рентгеновского пучка, а картина среза не содержит суммационных теней. КТ позволяет различать ткани, отличающиеся между собой по способности поглощать рентгеновское излучение (по коэффициенту аб­сорбции) и дифференцировать различные анатомические структуры (органы и ткани).

Несмотря на успехи современной лучевой диагностики, задачи ран­него выявления заболеваний и оценки эффективности проводимых ле­чебных мероприятий в настоящее время полностью не решены.

Устройство рентгеновского компьютерного томографа

1. Штатив (гентри), в который вмонтированы рентгеновская трубка, коллиматор, система детекторов, система сбора и передачи информа­ции на персональный компьютер. В штативе имеется отверстие, внутри которого перемещается стол с пациентом. Сканирование производится перпендикулярно (либо под углом) к продольной оси тела.

2. Стол, оборудованный транспортером для перемещения пациента.

3. Консоли управления установкой.

4. Персональный компьютер для обработки и хранения информации,

представляющий собой единый комплекс с консолью управления и штативом.

Принцип работы рентгеновского компьютерного томографа

В основе работы рентгеновского компьютерного томографа лежит просвечивание тонким рентгеновским лучом объекта исследования с последующими регистрацией не поглощенной части прошедшего че­рез этот объект излучения и выявлением распределения коэффициен­тов поглощения излучения в структурах полученного слоя. Пространственное распределение этих коэффициентов преобразуется компью­тером в изображение на экране дисплея, доступное для визуального и количественного анализа.

В процессе развития компьютерной томографии было создано несколько поколений компьютерных томографов.

В томографах I поколения (упомянутый выше EMI-Scaner, впервые установленный в 1971 г. в английском госпитале «Аткинсон Морли») ос­нову системы сканирования исследуемого объекта составляли рентге­новская трубка (как источник излучения) и один детектор, расположен­ные друг напротив друга. Блок рентгеновская трубка - детектор совер­шал только поступательное движение в плоскости среза.

В томографах II поколения использован аналогичный принцип ска­нирования. Модификацией были увеличение количества детекторов (до 100) и более широкий спектр ракурсов просвечивания, что позволило сократить время сканирования.

Аппараты III поколения стали дальнейшим развитием системы ска­нирования. В этих моделях был применен вращательный тип движения сканирующей системы (см. рис. 1) с большим количеством детекторов. Томографы III поколения позволили сканировать все тело пациента и по­лучили широкое распространение. (Они до настоящего времен i используются во многих медицинских учреждениях). Однако имеются2 обстоятельства технического свойства, на которые следует обратить внимание. Прежде всего, необходимо отметить основной недостаток аппаратов III поколения: жесткое крепление системы рентгеновская трубка - блок детекторов, которое при сбое работы одного из детекто­ров (или в измерительном канале) проявляется на изображении в виде кольцевого артефакта, вызывая проблемы последующей визуализации объекта исследования. Все это послужило основанием для создана следующего - IV поколения компьютерных томографов.

В компьютерных томографах IV поколения используется принципиаль­но новый вид технического решения системы рентгеновская трубка - де­текторы. В этом случае детекторы неподвижно размещены по всей внут­ренней поверхности кольца, внутри которого вращается источник излуче­ния. При этом количество детекторов составляет 4 тыс., а на некоторых моделях и 4,8 тыс. (фирма Picker, США), что позволяет добиться разреше­ния 22 пар линий/см. При этом при спиральном сканировании (об этом ре­жиме речь пойдет далее. - Прим. авт.) на оборудовании этого производи­теля разрешающая способность аппаратов остается неизменной.

Большое количество детекторов позволяет обеспечить максимально плотное их размещение (минимизируя попадание излучения в промежутки между детекторами), что повышает эффективность использования источника излучения и снижает лучевую нагрузку на пациента. В аппаратах IV поколения цикл сканирования соответствует обороту рентгеновской Т рубки (360°) с экспонированием от 1,0 до 0,25°, в результате чего собираются данные от 360 до 1440 проекционных профилей соот­ветственно.

В V поколении компьютерных томографов источником электронов является электронная пушка. Поток электронов попадает на тормозные пластины, образуя рентгеновское излучение. Для визуализации изображения требуется 5 мл/с с последующей трехмерной реконструкцией. Апертура компьютерного томографа V поколения более 1 м, что позво­ляет укладывать пациента самым разным образом. Следует отметить, что во всем мире используется около 100 томографов V поколения -из-за высокой стоимости и сложности технического обслуживания ши­рокого применения они не получили.

В настоящее время имеются два варианта КТ-сканирования - ак­сиальное и спиральное. На аппаратах II поколения возможно только ак­сиальное сканирование. Применение КТ-аппаратов последующих поко­лений позволяет использовать как аксиальное, так и спиральное скани­рование. Различия между этими видами обработки информации заклю­чаются в следующем.

При аксиальном сканировании получается такой вид изображения, который ограничивает качество последующей реконструкции.

Спиральное сканирование - новый этап в развитии КТ. В этом случае продуцируется один непрерывный массив информации, что дает новые возможности для последующей реконструкции изображения. (С каждо­го витка спирали можно получить множественные срезы. При этом па­раметры обработки данных можно выбрать до и после получения информации). Спиральное сканирование в отличие от аксиального осуще­ствляется при непрерывном движении стола через поле сканирования, которое образует постоянно вращающаяся рентгеновская трубка.

Преимущества спирального типа сканирования: скорость проведе­ния исследования, исключение пропуска информации между КТ-срезами, возможность синхронизировать КТ с введением большого объема контрастного препарата и выполнять исследования в разные промежут­ки времени после его введения. Особое внимание при получении изоб­ражения следует обратить на возможность использования в этом случае ещё одной или нескольких обработок «сырых» математических данных сканирования, для чего было введено новое понятие «индекс рекон­струкции» (толщина слоя, выделяемого из «сырых» данных компью­тера). Если величина индекса реконструкции меньше толщины выде­ляемого КТ-слоя, восстанавливаемого из «сырых» данных, то происхо­дит математическое наложение близлежащих периферических отделов КТ-срезов, что позволяет получить новую серию изображений высокого качества той же области сканирования без риска для пациента, так как повторное сканирование (дополнительное облучение) отсутствует. Однако при этом значительно увеличивается количество реконструированных срезов, что увеличивает время анализа КТ-информации. Математическое наложение близлежащих слоев позволяет нивелировать зубчатые края контуров органов и тканей при построении качественных мультипланарных и трехмерных изображений.

Мультислайсовая КТ - последнее достижение в развитии методики сканирования: благодаря увеличению рядов детекторов за один оборот рентгеновской трубки можно получить до 320 срезов. С помощью мультислайсовой КТ также получают цифровое изображение поперечных срезов любого отдела тела человека, отражающее топографию органов и систем, а также локализацию, характер и стадии выявленных измене­ний, их взаимосвязи с окружающими структурами. При этом сохраняет­ся эффективность спирального сканирования. Одним из достоинств мультислайсового способа сканирования является возможность после­дующих реконструкций с изменением величин толщины среза и шага стола томографа. Последующая реконструкция полученных при иссле­довании КТ-срезов дает полное представление об анатомо-топографических взаимоотношениях.

Мультислайсовый компьютерный томограф представляет собой сверхбыстрый вычислительный комплекс, позволяющий сократить до нескольких минут время самого сложного в методическом плане иссле­дования. На аппарате этого класса при соответствующем анестезиоло­гическом обеспечении можно обследовать детей в возрасте от одного года и старше. Ограничениями в данном случае являются лучевая нагрузка на пациента и разрешающая способность аппарата.

Для диагностики заболеваний легких мультислайсовая спиральная КТ особенно важна, позволяя оценивать узловые образования в легоч­ной ткани: их размеры, объем, скорость роста. Автоматически и с высо­кой чувствительностью вычисляется время удвоения размера узла, а кроме того, выстраивается трехмерная модель узлового образования с выделением из сосудистых и плевральных структур, что дает представление о его наружном изображении.

Мультислайсовая спиральная КТ - незаменимая неинвазивная мето­дика в кардиологии. С ее помощью получают изображения сердца в раз­личные фазы, подсчитывают сердечные объемы, такие как фракция выброса левого желудочка, пиковая скорость выброса, диастолические объемы правого и левого желудочков, конечный диастолический и удар­ный объемы, а также толщину миокардиальной стенки, ее подвижность, массу миокарда и, кроме того, выполняют объемную реконструкцию на­ружного изображения сердца.

Следует отметить, что использование неионных контрастных препаратов в различной концентрации (ультравист, омнипак и т. д.) существенно повышает надежность и безопасность контрастных исследований при КТ.

Возможности мультислайсовой спиральной КТ свидетельствуют о том, что данная методика исследования позволяет по-новому осмыслить представления о роли КТ в диагностическом процессе. В первую очередь это обусловлено возможностями сканирования, которое практически исключает пропуск диагностически важной информации при поиске небольших по размеру патологических изменений, а также быстрого сканирования анатомически больших областей без потери качества. Пои этом необходимо подчеркнуть возможность малоинвазивного исследования сердечно-сосудистой системы с использованием болюсного внутрисосудистого введения контрастного вещества. К тому же данная КТ-методика позволяет получить и изучить данные о состоянии паренхиматозных органов и тканей в различные фазы (артериальную, венозную, смешанную) прохождения контрастного вещества по иссле­дуемому органу, а также объединить полученные при КТ-исследовании данные в одно комбинированное изображение органов и тканей. Такое комбинированное изображение можно рассматривать в различных плоскостях (мультипланарная реконструкция), строить объемное трех­мерное изображение, вращая его на экране монитора под любым углом вокруг оси.

С внедрением новых компьютерных методик становится возможным исследовать сердечно-сосудистую систему. Это позволяет быстро и ка­чественно получить представление об анатомии сердца и сосудов в выб­ранной анатомической области: измерить ход, минимальный и макси­мальный диаметр, степень стеноза в процентном отношении и абсолют­ных величинах, его протяженность, а также осуществить планирование хирургического вмешательства и контроль за его эффективностью.

Благодаря наличию объемного пакета программного обеспечения в современных аппаратах стало реальным создание томограмм практи­чески в любой плоскости. Трехмерная реконструкция КТ-данных, позво­ляет получить более детальное представление об анатомо-топографических взаимоотношениях органов и систем. С внедрением трехмерных изображений изучаемых органов и систем возрастают наглядность и Достоверность получаемых данных.

Примеры трёх различных компьютерных томографов для мелких животных

1 - рентгеновская трубка; 2 – поворачивающийся образец; 3 – детектор; 4 – ось вращения; 5 – конический луч; 6 – варьирующее увеличение; 7 – поворачивающийся гентри; 8 – мышиная кровать.

Настольный микро-КТ (A, B) с вращающейся моделью держателя, стационарным детектором области и микрофокусной рентгеновской трубкой, обеспечивающей усиленное излучение. Такая установка в основном используется для проведения лабораторных исследований. Хорошие результаты исследования зависят от оптимального соотношения между полем сканирования, чёткостью, хорошей фиксации животного к столу, при условии вращающегося гентри (C, D). Всё большие требования к пространственному разрешению, быстрому и более широкому сканированию исследуемого поля достигаются и отображаются на плоской панели детектора, крутящегося гентри со стационарным столом (E, F).

Таблица 1. Сравнение показателей микро-, мини- и клинических компьютерных томографов.

КлиническийКТ

Подходит для

Образцы тканей, насекомые, мыши, крысы

Мыши, крысы, кролики, приматы,

мини-свиньи

До людей

Пространственное разрешение (изотропное)

5 мкм (одна конечность) - 100 мкм (целое животное)

100 – 450 мкм

> 450 мкм (z-ось > 600 мкм)

Осевое сканирование поля зрения

Время получения "стандартного"

объёма (например, всего животного)

От нескольких секунд до нескольких часов (иногда наблюдается получение компьютерными томографами одного среза

менее, чем за секунду)

От 0,5 секунды до нескольких секунд

Через несколько секунд (с вращением

Доза радиации

~ 10-500 мГр

Настольный, вращающийся образец (с изменением

геометрии, резкости сканирования в поле зрения и т.д.)

или вращающийся гентри

Вращающийся образец или вращающийся

гентри (определённая геометрия)

Вращающийся гентри (определённая геометрия)

Компенсирование сердечных и дыхательных движений

Ожидаемый запуск

Ожидаемый запуск, ретроспективный строб

Модуляция сканирования, ретроспективный строб

Примеры цифр

Рис. (1 ) A, B, C, D, (3 ), (4 )

Рис. (1 ) E, F, (2 ), (5 ), (6 )

Основы получения изображения

Компьютерно-томографическая диагностика основана на традици­онных рентгенологических принципах работы, и важнейшими задачами, которые необходимо решить при проведении исследования, являются определение точной локализации, количества, формы и размеров пато­логических очагов, интенсивности их тени, четкости контуров, а также один из основных моментов - возможность математически точного оп­ределения коэффициента абсорбции (плотности) исследуемой ткани, отражающего величину поглощения пучка рентгеновского излучения при прохождении через тело человека. В зависимости от плотности каж­дая ткань по-разному поглощает рентгеновское излучение, и, соответ­ственно, для каждой ткани имеется свой коэффициент абсорбции. Пер­сональный компьютер выполняет математическую реконструкцию вы­численных коэффициентов абсорбции и их пространственное распре­деление на многоклеточной матрице с последующей трансформацией в виде изображения на экране дисплея. Картина воспроизводится на матрице, размеры которой зависят от конструкции аппарата (от 256 на аппарате Somatom CR фирмы Siemens до 1024 на аппарате PQ-6000 фирмы Picker) с соответствующей величиной клетки (пиксель). Увеличе­ние матрицы наряду с увеличением количества детекторов, а также плотности их расстановки позволяет определить коэффициент абсорб­ции меньшего участка КТ-изображения. Коэффициенты абсорбции из­меряются в относительных единицах по шкале плотностей, предложен­ной G. Hounsfield (рис. 2), известных как единицы Хаунсфилда (ед.Н).

Таким образом, компьютерный томограф обладает двумя видами разрешающей способности: пространственная (зависящая от размера клетки матрицы) и перепад плотности (порог чувствительности равен 5 ед.Н (0,5%).

Шкала плотностей позволяет сопоставлять коэффициент абсорбции различных тканей с поглощающей способностью воды, коэффициент абсорбции которой принят за 0. На практике положение центра окна ус­танавливают равным измеренному или ожидаемому среднему значению плотностей исследуемых структур в области интереса, а ширину окна - в соответствии с диапазоном плотностей исследуемых органов и тканей. Окно шириной в 256 значений градаций серого может быть раз­мещено на любом участке шкалы плотностей путем произвольного вы­бора центра окна. Если значения чисел в матрице изображения пропор­циональны значениям чисел Хаунсфилда в матрице реконструкции, то те участки экрана, которые отображают более плотные ткани, будут выглядеть светлее, чем рентгенологически менее плотные области. Со­ответственно, на экране монитора белым цветом будут отображаться наиболее рентгенологически плотные структуры, а более темным цве­том - структуры, имеющие меньшую рентгенологическую плотность. Изменение плотностных характеристик органов и тканей на экране ви­зуально будет восприниматься как изменение контрастности. Регулируя ширину окна, можно изменять изучаемый диапазон плотностей, что ви­зуально будет восприниматься как изменение в контрастности изобра­жения близких по значению плотности структур.

Следует отметить, что соотношение, предложенное G. Haunsfield, имеет простую физическую интерпретацию. В этой системе отсчета ед.Н воды равна 0, ед.Н воздуха равна -1000, а для самых плотных структур ед.Н составляют примерно 3000.

Диагностические возможности компьютерной томографии

Поданным литературы (2, 6, 8,11, 19, 24, 31, 48, 50, 53), чувствитель­ность метода составляет от 80 до 95%, специфичность несколько ни­же - 75-90% для различных патологических процессов.

Известны 2 типа ограничений диагностических возможностей рент­геновской КТ - объективные и субъективные.

К объективным ограничениям относятся:

1) малые размеры патологического очага, отсутствие градации плот­ностей между патологическими и неизмененными тканями;

2) атипичное течение патологического процесса при нетипичной КТ-картине.

Субъективные ограничения включают:

1) неверно выбранную тактику исследования;

2) ошибки, возникающие в результате неполноценной подготовки па­циента к исследованию или из-за артефактов технического порядка, обусловленных подвижностью объекта исследования.

Для качественной реконструкции необходимо выполнять десятки срезов. При этом сразу же встает вопрос о лучевой нагрузке на пациента, которая представляет собой величину эффективной дозы (Е). Эффективная доза - условное понятие, характеризующее дозу равномерного облучения всего тела, соответствующую риску появления отдаленных последствий при дозе реального неравномерного облучения определенного органа (или нескольких органов). Измеряется эффективна доза в зивертах (Зв).

В настоящее время дозовая нагрузка для жителя нашей страны при рентгенологических обследованиях составляет 2,5-3,0 мЗв в год, что 2-3 раза превышает уровень облучения в таких странах, как Англия Франция, Швеция, США, Япония (2, 17, 23).

Для качественной мультипланарной реконструкции необходимо делать десятки КТ-срезов, а значит, при выполнении исследования следует рассматривать все возникающие вопросы о лучевой нагрузке на пациента.

В Российском научном центре рентгенорадиологии Минздравсоцразвития РФ было проведено исследование дозовых нагрузок на пациентов при выполнении ряда рентгенологических процедур, включая КТ. По результатам проведенной работы (11, 39) было установлено, что К является наиболее щадящим методом рентгеновского исследования (табл. 1).

Необходимо подчеркнуть, что для рентгеновской КТ характерны ло­кальность лучевой нагрузки и высокий уровень защиты других органов от рассеянного излучения. Кроме того, лучевая нагрузка, благодаря модернизации оборудования, уменьшается.

Таблица 1. Эффективные дозы при ряде компьютерно-томографических и

рентгенографических исследований

Организация отделения компьютерной томографии

Штат отделения рентгеновской компьютерной томографии мно­гопрофильной 600-коечной больницы, как правило, состоит из 6 чело­век (2 врача, 3 рентгенолаборанта и 1 инженер). По нашему опыту, это­го числа специалистов вполне достаточно для эффективного функцио­нирования подразделения.

Следует отметить, что штатное расписание кабинета РКТ регламен­тируется приказом Минздрава РСФСР № 132 от 02.08.91, в соответст­вии с которым кабинет РКТ входит в состав отдела (отделения) лучевой диагностики лечебно-профилактического учреждения, возглавляет его квалифицированный врач-рентгенолог, прошедший подготовку по рентгеновской компьютерной томографии. При этом штатные нормативы кабинета РКТ устанавливаются с учетом обеспечения работы не менее чем в двухсменном режиме из расчета для односменной работы: 1 врач-рентгенолог, 2 рентгенолаборанта и 1 инженер.

В отделении обследуются пациенты с патологией практически всех, кроме «движущихся», например сердца, органов как хирургического, так и терапевтического характера.

Запись больных на исследование производится на основании заявки и истории болезни - для стационарных больных, на основании краткой выписки из амбулаторной карты с обоснованием цели исследования -для амбулаторных больных. Амбулаторные больные обследуются в по­рядке очереди по предварительной записи, стационарные - в тот же (экстренная диагностика) либо на следующий день после необходимой подготовки для проведения процедуры.

Компьютерно-томографическое исследование проводится по следу­ющей схеме:

1) анализ медицинской документации, определение тактики КТ-исследования;

2) размещение пациента на столе;

3) ввод в компьютерный томограф общих сведений (паспортные данные. Дополнительные комментарии);

4) выполнение томограммы: уточнение исходного уровня выполнения процедуры и возможного угла наклона рамы томографа, т.е. определяется план исследования;

5) выполнение серии КТ-срезов;

6) запись полученной информации на магнитный и фотоносители;

7) обработка и описание результатов сканирования.

На компьютерно-томографическое исследование без внутривенного контрастного усиления отводится 45 мин, с внутривенным контрастным усилением - 60 мин. Полученное изображение фиксируется на жесткий диск то­мографа (временное хранение), магнитную ленту, компакт-диск, рент­геновскую пленку (для длительного хранения). Фотопроцесс осущес­твляется в специальной лаборатории (минимальная площадь 12 м 2) ав­томатически при помощи проявочной машины. Архив рентгенограмм хранится в специальной комнате в несгораемых шкафах.

В день исследования пациента его основные личные (паспортные) и анамнестические данные вводятся в базу данных персонального компь­ютера, где при помощи специально созданной программы выполняется описание полученных КТ-данных. Кроме того, основные сведения - пас­портные данные, уровень КТ-исследования, предварительный диагноз, заключение по результатам КТ, учет израсходованной пленки - записы­ваются в специальные журналы. Картотека обследованных больных (паспортные данные, название медицинского подразделения, напра­вившего пациента на исследование, дата и уровень исследования, предварительный диагноз, описание КТ-данных, количество выполнен­ных снимков) хранится в базе данных персонального компьютера и ре­гулярно подвергается статистической обработке.

Компьютерная томография - один из самых современных и информативных методов диагностики, получающий сейчас все более широкое распространение. Что же такое компьютерная томография?

Принципы компьютерной томографии

Принцип работы компьютерного томографа достаточно прост. Основывается он на использовании рентгеновских лучей (X-лучей). Проходя через тело человека, рентгеновские лучи поглощаются различными тканями в разной степени. Затем X-лучи попадают на специальную чувствительную матрицу, данные с которой считываются в компьютер. Ну а современные компьютеры позволяют обработать эту информацию как угодно: нарисовать четкую "картинку" исследуемого органа, построить различные таблицы и графики.

Казалось бы, отличие от обычной рентгенографии не такое уж большое - ведь и простой рентгеновский снимок можно обработать на компьютере. Но на самом деле это не так. На рентгеновском снимке мы видим лишь накладывающиеся друг на друга "тени" всех органов, через которые прошел рентгеновский луч. А компьютерный томограф позволяет получить четкое изображение определенного среза тела. Сделав же "фотографии" нескольких таких срезов с шагом, скажем, в 1 миллиметр, мы получим очень качественное объемное, трехмерное изображение, которое позволяет увидеть в подробностях топографию органов пациента, локализацию, протяженность и характер очагов заболеваний, их взаимосвязь с окружающими тканями. Кроме того, чувствительность компьютерных томографов на порядок выше, чем обычных рентгеновских аппаратов: на рентгеновском снимке можно достаточно четко различить ткани, отличающиеся по степени проглощения X-лучей на 10-20%, а у современных компьютерных томографов этот показатель составляет 1-2%.

Где применяется компьютерная томография

Компьютерная томография может применяться для диагностики очень широкого спектра заболеваний. Первой областью, где стали активно использоваться компьютерные томографы, стала неврология и нейрохирургия. Впервые врачи получили возможность заглянуть в головной мозг живого человека - ни УЗИ, ни обычная рентгенография такой возможности не дают.

Чуть позже компьютерные томографы стали использовать для диагностики заболеваний легких и органов брюшной полости. В настоящее время компьютерная томография широко применяется также для исследования мочеполовой сферы (почки, мочевой пузырь и мочеточники, яичники, простата), костей и суставов, позвоночного столба и спинного мозга.

Вредна ли компьютерная томография? Так как метод основан на использовании рентгеновских лучей, то понятно, что при исследовании пациент получает определенную дозу излучения. Но эта доза невелика, не больше, чем при рентгенографии небольших участков, например зубов или кисти.

А вот действительно серьезный недостаток метода компьютерной томографии - это его дороговизна. Стоимость компьютерных томографов такова, что до недавнего времени приобрести их не могли себе позволить даже многие областные клинические больницы. Сейчас ситуация несколько улучшилась, но говорить о доступности этого метода обследования для всех, кто в нем нуждается, еще очень и очень рано...

Читайте подробнее.

Компьютерная томография - это особый вид рентгенологического исследования, которое проводится посредством непрямого измерения ослабления или затухания, рентгеновских лучей из различных положений, определяемых вокруг обследуемого пациента. В сущности, все, что мы знаем, это:

  • что покидает рентгеновскую трубку,
  • что достигает детектора и
  • каково место рентгеновской трубки и детектора в каждом положении.

Все остальное следует из этой информации. Большинство КТ-сечений ориентированы вертикально по отношению к оси тела. Они обычно называются аксиальными или поперечными срезами. Для каждого среза рентгеновская трубка поворачивается вокруг пациента, толщина среза выбирается заранее. Большинство КТ-сканеров работают по принципу постоянного вращения с веерообразным расхождением лучей. При этом рентгеновская трубка и детектор жестко спарены, а их ротационные движения вокруг сканируемой области происходят одновременно с испусканием и улавливанием рентгеновского излучения. Таким образом, рентгеновские лучи, проходя через пациента, доходят до детекторов, расположенных на противоположной стороне. Веерообразное расхождение происходит в диапазоне от 40° до 60°, в зависимости от устройства аппарата, и определяется углом, начинающимся от фокусного пятна рентгеновской трубки и расширяющимся в виде сектора до наружных границ ряда детекторов. Обычно изображение формируется при каждом обороте в 360°, полученных данных оказывается для этого достаточно. В процессе сканирования во многих точках измеряют коэффициенты ослабления, формируя профайл затухания. На самом деле профайлы затухания представляют собой не что иное, как набор полученных сигналов от всех каналов детекторов с данного угла системы трубка-детектор. Современные КТ-сканеры способны излучать и собирать данные приблизительно с 1400 положений системы детектор-трубка на окружности 360°, или около 4 положений в градусе. Каждый профайл ослабления включает в себя измерения от 1500 каналов детекторов, т. е. приблизительно 30 каналов в градусе, при условии угла расхождения луча 50°. В начале исследования, при продвижении стола пациента с постоянной скоростью внутрь гентри, получают цифровую рентгенограмму («сканограмму» или «топограмму»), на которой в дальнейшем могут быть распланированы требуемые срезы. При КТ-исследовании позвоночника или головы гентри поворачивают под нужным углом, тем самым добиваясь оптимальной ориентации сечений).

Компьютерная томография использует комплексные показания датчика рентгена, который вращается вокруг пациента с целью получения большого количества разнообразных изображений определенной глубины (томограммы), которые переводятся в цифровую форму и преобразовываются в перекрестные изображения. КТ обеспечивает 2- и 3-мерную информацию, которую невозможно получить с помощью простого рентгена и с помощью гораздо более высококонтрастного разрешения. В результате КТ стала новым стандартом для отображения большей части внутричерепных, головных и шейных, внутригрудных и внутрибрюшных структур.

Ранние образцы сканеров КТ использовали только один датчик рентгена, и пациент проходил через сканер с приращением, останавливаясь для каждого снимка. Этот метод был в значительной степени заменен винтовой КТ: пациент непрерывно перемещается через сканер, который непрерывно вращается и делает снимки. Винтовая КТ в большой степени сокращает время отображения и уменьшает толщину пластины. Использование сканеров с многочисленными датчиками (4-64 рядов датчиков рентгена) далее уменьшает время отображения и обеспечивает толщину пластины менее 1 мм.

С таким количеством отображенных данных изображения могут быть восстановлены в почти любом ракурсе (как это делается в МРТ) и могут использоваться для построения 3-мерных снимков при поддержании диагностического решения изображения. Клиническое применение включает ангиографию КТ (например, для оценки легочной эмболии) и кардиоотоб-ражения (например, коронарная ангиография, оценка коронарного отвердения артерии). Электронно-лучевая КТ, другой тип быстрой КТ, может также использоваться для оценки коронарного отвердения артерии.

Снимки КТ могут быть получены с/или без контраста. Неконтрастная КТ может обнаруживать острое кровоизлияние (которое кажется ярко-белым) и характеризовать переломы кости. Контрастная КТ использует IV или устный контраст, или оба. IV контраст, подобный используемому в простом рентгене, применяется для отображения опухолей, инфекции, воспаления и травм в мягких тканях и для оценки состояния сосудистой системы, как в случаях подозрения на легочную эмболию, аортальную аневризму или аортального рассечения. Выделение контраста через почки позволяет дать оценку мочеполовой системы. Для получения информации о контрастных реакциях и их трактовке.

Оральный контраст используется для отображения брюшной области; это помогает отделять кишечную структуру от окружающих. Стандартный устный контраст - контраст на основе бариумного йода, может использоваться в том случае, когда есть подозрение на кишечную перфорацию (например, при травме); низкий осмолярный контраст должен использоваться, когда высок риск аспирации.

Воздействие радиации - важный вопрос при использовании КТ. Лучевая доза от обычной брюшной КТ в 200- 300 раз выше, чем доза радиации, получаемая при типичном рентгене грудной области. КТ сегодня является наиболее распространенным источником искусственного облучения для большей части населения и составляет более 2/3 совокупного медицинского облучения. Эта степень подверженности человека облучению - не тривиальна, риск облучения детей, сегодня испытывающих воздействие радиации КТ, за всю их жизнь, согласно подсчетам, будет намного выше, чем степень облучения взрослых. Поэтому необходимость экспертизы КТ должна быть тщательно взвешена с учетом возможного риска для каждого отдельного пациента.

Мультиспиральная компьютерная томография

Спиральная компьютерная томография с многорядным расположением детекторов (мультиспиральная компьютерная томография)

Компьютерные томографы с многорядным расположением детекторов относятся к самому последнему поколению сканеров. Напротив рентгеновской трубки располагается не один, а несколько рядов детекторов. Это дает возможность значительно укоротить время исследования и улучшить контрастное разрешение, что позволяет, например, четче визуализировать контрастированные кровеносные сосуды. Ряды детекторов Z-оси напротив рентгеновской трубки различны по ширине: наружный ряд шире, чем внутренний. Это обеспечивает лучшие условия для реконструкции изображения после сбора данных.

Сравнение традиционной и спиральной компьютерной томографии

При традиционной компьютерной томографии получают серии последовательных одинаково пространственно расположенных изображений через определенную часть тела, например, брюшную полость или голову. Обязательна короткая пауза после каждого среза для продвижения стола с пациентом в следующее заранее заданное положение. Толщина и наложение/межсрезовый промежуток выбираются заранее. Сырые данные для каждого уровня сохраняются отдельно. Короткая пауза между срезами дает возможность пациенту, находящемуся в сознании, перевести дыхание и тем самым избежать грубых дыхательных артефактов на изображении. Тем не менее, исследование может занимать несколько минут, в зависимости от области сканирования и размеров пациента. Необходимо правильно подобрать время получения изображения после в/в введения КС, что особенно важно для оценки перфузионных эффектов. Компьютерная томография является методом выбора для получения полноценного двухмерного аксиального изображения тела без помех, создаваемых наложением костной ткани и/или воздуха, как это бывает на обычной рентгенограмме.

При спиральной компьютерной томографии с однорядным и многорядным расположением детекторов (МСКТ) сбор данных исследования пациента происходит постоянно во время продвижения стола внутрь гентри. Рентгеновская трубка при этом описывает винтовую траекторию вокруг пациента. Продвижение стола скоординировано со временем, необходимым для оборота трубки на 360° (шаг спирали) - сбор данных продолжается непрерывно в полном объеме. Подобная современная методика значительно улучшает томографию, потому что дыхательные артефакты и возникающие помехи не затрагивают единый набор данных так значительно, как при традиционной компьютерной томографии. Единая база сырых данных используется для восстановления срезов различной толщины и различных интервалов. Частичное наложение сечений улучшает возможности реконструкции.

Сбор данных при исследовании всей брюшной полости занимает 1 - 2 минуты: 2 или 3 спирали, каждая длительностью 10-20 секунд. Ограничение времени обусловлено способностью пациента задержать дыхание и необходимостью охлаждения рентгеновской трубки. Еще некоторое время необходимо на воссоздание изображения. При оценке функции почек требуется небольшая пауза после введения контрастного вещества, чтобы дождаться экскреции контрастного препарата.

Еще одно важное преимущество спирального метода - возможность выявить патологические образования меньшего размера, чем толщина среза. Маленькие метастазы в печени могут быть пропущены, если в результате неодинаковой глубины дыхания пациента во время сканирования не попадают в срез. Метастазы хорошо выявляются из сырых данных спирального метода при восстановлении срезов, полученных с наложением сечений.

Пространственное разрешение

Восстановление изображения основано на различиях в контрастности отдельных структур. На основе этого создается матрица изображения области визуализации 512 х 512 или более элементов изображения (пикселей). Пиксели выглядят на экране монитора как участки различных оттенков серого цвета в зависимости от их коэффициента ослабления. На самом деле это даже не квадратики, а кубики (воксели = объемные элементы), имеющие длину вдоль оси тела, соответственно толщине среза.

Качество изображения повышается с уменьшением вокселей, но это относится только к пространственному разрешению, дальнейшее истончение среза снижает соотношение «сигнал-помеха». Другой недостаток тонких срезов - увеличение дозы облучения пациента. Тем не менее, маленькие воксели с одинаковыми размерами во всех трех измерениях (изотропный воксель), дают значительные преимущества: мультипланарная реконструкция (MPR) в корональной, сагиттальной или других проекциях представлена на изображении без ступенчатого контура). Использование вокселей неодинаковых размеров (анизотропные воксели) для MPR приводит к появлению зубчатости реконструированного изображения. Так, например, могут возникнуть трудности при исключении перелома.

Шаг спирали

Шаг спирали характеризует степень перемещения стола в мм за одно вращение и толщину среза. Медленное продвижение стола формирует сжатую спираль. Ускорение перемещения стола без изменения толщины среза или скорости вращения создает пространство между срезами на получаемой спирали.

Наиболее часто шаг спирали понимают как отношение перемещения (подачи) стола при обороте гентри, выраженное в мм, к коллимации, также выраженной в мм.

Поскольку размерности (мм) в числителе и знаменателе уравновешены, шаг спирали - величина безразмерная. Для МСКТ за т. н. объемный шаг спирали обычно принимают отношение подачи стола к одиночному срезу, а не к полной совокупности срезов вдоль оси Z. Для примера, который был использован выше, объемный шаг спирали равен 16 (24 мм / 1,5 мм). Тем не менее, существует тенденция возврата к первому определению шага спирали.

Новые сканеры дают возможность выбора краниокаудального (ось Z) расширения области исследования по топограмме. Также по мере необходимости корректируются время оборота трубки, коллимирование среза (тонкий или толстый срез) и время исследования (промежуток задержки дыхания). Программное обеспечение, например, «SureView», рассчитывает соответствующий шаг спирали, обычно устанавливая величину между 0,5 и 2,0.

Коллимирование среза: разрешение вдоль оси Z

Разрешение изображения (вдоль оси Z или оси тела пациента) может также быть адаптировано к конкретной диагностической задаче с помощью коллимирования. Срезы толщиной от 5 до 8 мм полностью соответствуют стандартному исследованию брюшной полости. Однако точная локализация небольших фрагментов переломов костей или оценка едва различимых легочных изменений требуют использования тонких срезов (от 0,5 до 2 мм). Что определяет толщину среза?

Термин коллимирование определяют как получение тонкого или толстого среза вдоль продольной оси тела пациента (ось Z). Врач может ограничить веерообразное расхождение пучка излучения от рентгеновской трубки коллиматором. Размер отверстия коллиматора регулирует прохождение лучей, которые попадают на детекторы позади пациента широким или узким потоком. Сужение пучка излучения позволяет улучшить пространственное разрешение вдоль оси Z пациента. Коллиматор может быть расположен не только сразу на выходе из трубки, но также непосредственно перед детекторами, то есть «позади» пациента, если смотреть со стороны источника рентгеновского излучения.

Зависимая от ширины отверстия коллиматора система с одним рядом детекторов позади пациента (одиночный срез) может выполнять срезы толщиной 10 мм, 8 мм, 5 мм или даже 1 мм. КТ-исследование с получением очень тонких сечений именуется «КТ высокого разрешения» (ВРКТ). Если толщина срезов меньше миллиметра - говорят о «КТ сверхвысокого разрешения» (СВРКТ). СВРКТ, применяемая для исследования пирамиды височной кости со срезами толщиной около 0,5 мм, выявляет тонкие линии перелома, проходящие через основание черепа или слуховые косточки в барабанной полости). Для печени высококонтрастное разрешение используется с целью обнаружения метастазов, при этом требуются срезы несколько большей толщины.

Схемы расстановки детекторов

Дальнейшее развитие односрезовой спиральной технологии привело к внедрению мультисрезовой (мультиспиральной) методики, при которой используется не один, а несколько рядов детекторов, расположенных перпендикулярно оси Z напротив источника рентгеновского излучения. Это дает возможность одновременно собирать данные с нескольких сечений.

В связи с веерообразным расхождением излучения ряды детекторов должны иметь разную ширину. Схема расстановки детекторов заключается в том, что ширина детекторов увеличивается от центра к краю, что позволяет варьировать комбинациями толщины и количества получаемых срезов.

Например, 16-срезовое исследование может быть выполнено с 16 тонкими срезами высокого разрешения (для Siemens Sensation 16 это методика 16 х 0,75 мм) или с 16 сечениями вдвое большей толщины. Для подвздошно-бедренной КТ-ангиографии предпочтительно получение объемного среза за один цикл вдоль оси Z. При этом ширина коллимирования 16 х 1,5 мм.

Развитие КТ-сканеров не закончилось 16 срезами. Сбор данных можно ускорить, используя сканеры с 32 и 64 рядами детекторов. Однако тенденция к уменьшению толщины срезов ведет к повышению дозы облучения пациента, что требует дополнительных и уже осуществимых мероприятий по снижению воздействия излучения.

При исследовании печени и поджелудочной железы многие специалисты предпочитают уменьшать толщину срезов с 10 до 3 мм для улучшения резкости изображения. Однако это увеличивает уровень помех приблизительно на 80 %. Поэтому, чтобы сохранить качество изображения, нужно или дополнительно прибавить силу тока на трубке, т. е. повысить силу тока (мА) на 80 %, или увеличить время сканирования (возрастает произведение мАс).

Алгоритм реконструкции изображений

Спиральная компьютерная томография имеет дополнительное преимущество: в процессе восстановления изображения большинство данных не измеряются фактически в конкретном срезе. Взамен этого, измерения, полученные за пределами этого среза, интерполируются с большинством значений вблизи среза и становятся данными, закрепленными за этим срезом. Другими словами: результаты обработки данных вблизи среза являются более важными для восстановления изображения конкретного сечения.

Из этого следует интересный феномен. Доза пациента (в мГр) определяется как мАс за вращение, разделенное на шаг спирали, а доза на одно изображение приравнивается к мАс за вращение без учета шага спирали. Если, например, выставлены настройки 150 мАс за вращение с шагом спирали 1,5, то доза пациента составляет 100 мАс, а доза, приходящаяся на изображение, - 150 мАс. Поэтому использование спиральной технологии может улучшить контрастное разрешение выбором высокого значения мАс. При этом появляется возможность увеличить контрастность изображения, тканевое разрешение (четкость изображения) за счет уменьшения толщины среза и подобрать такой шаг и длину интервала спирали, чтобы доза пациента уменьшалась! Таким образом, большое количество срезов может быть получено без увеличения дозы или нагрузки на рентгеновскую трубку.

Эта технология особенно важна при преобразовании полученных данных в 2-мерные (сагиттальную, криволинейную, корональную) или 3-мерные реконструкции.

Данные измерений от детекторов пропускаются, профайл за профайлом, к электронной части детектора как электрические сигналы, соответствующие фактическому ослаблению рентгеновского излучения. Электрические сигналы оцифровываются и затем пересылаются на видеопроцессор. На этом этапе реконструкции изображения используется метод «конвейера», состоящий из предварительной обработки, фильтрации и обратного проектирования.

Предварительная обработка включает все исправления, произведенные для подготовки полученных данных для восстановления изображения. Например, исправление темнового тока, выходного сигнала, калибровки, коррекция дорожек, увеличение жесткости излучения и др. Эти корректировки выполняются для уменьшения вариаций в работе трубки и детекторов.

Фильтрация использует отрицательные величины для коррекции размазывания изображения, присущего обратному проектированию. Если, например, сканируется цилиндрический водный фантом, который воссоздается без фильтрации, края его окажутся крайне расплывчатыми. Что произойдет, когда восемь профайлов ослабления накладываются друг на друга для восстановления изображения? Так как некоторая часть цилиндра измеряется двумя совмещенными профайлами, вместо реального цилиндра получается звездчатое изображение. Вводя отрицательные величины за пределами положительной составляющей профайлов ослабления, удается достичь того, что края этого цилиндра становятся четкими.

Обратное проектирование перераспределяет данные свернутого скана в 2-мерную матрицу изображения, отображая порченные срезы. Это выполняется, профайл за профайлом, до завершения процесса воссоздания образа. Матрицу изображения можно представить в виде шахматной доски, но состоящей из 512 x 512 или 1024 х 1024 элементов, обычно называемых «пикселями». В результате обратного проектирования каждому пикселю в точности соответствует заданная плотность, которая на экране монитора имеет различные оттенки серого цвета, от светлого до темного. Чем светлее участок экрана, тем выше плотность ткани в пределах пикселя (например, костные структуры).

Влияние напряжения (кВ)

Когда исследуемая анатомическая область характеризуется высокой поглощающей способностью (например, КТ головы, плечевого пояса, грудного или поясничного отделов позвоночника, таза или просто полного пациента), целесообразно использовать повышенное напряжение или, взамен этого, более высокие значения мА. При выборе высокого напряжения на рентгеновской трубке, вы увеличиваете жесткость рентгеновского излучения. Соответственно, рентгеновские лучи гораздо легче проникают через анатомическую область с высокой поглощающей способностью. Положительной стороной этого процесса является снижение низкоэнергетических компонентов излучения, которые поглощаются тканями пациента, не влияя на получение изображения. Для обследования детей и при отслеживании болюса KB может быть целесообразным использование более низкого напряжения, чем в стандартных установках.

Сила тока трубки (мАс)

Сила тока, измеряемая в миллиампер-секундах (мАс), также оказывает влияние на дозу облучения, получаемую пациентом. Крупному больному для получения качественного изображения требуется увеличение силы тока трубки. Таким образом, более тучный пациент получает большую дозу облучения, чем, например, ребенок с заметно меньшими размерами тела.

Области с костными структурами, которые больше поглощают и рассеивают излучение, такие как плечевой пояс и таз, нуждаются в большей силе тока трубки, чем, например, шея, брюшная полость худощавого человека или ноги. Эта зависимость активно используется при защите от облучения.

Время сканирования

Следует выбрать максимально короткое время сканирования, особенно при исследовании брюшной полости и грудной клетки, где сокращения сердца и перистальтика кишечника могут ухудшить качество изображения. Качество КТ-исследования также улучшается при снижении вероятности непроизвольных движений пациента. С другой стороны, может возникать необходимость более длительного сканирования для сбора достаточного количества данных и максимального пространственного разрешения. Иногда выбор продленного времени сканирования со снижением силы тока используется сознательно с целью продления срока эксплуатации рентгеновской трубки.

Трехмерная реконструкция

В связи с тем, что при спиральной томографии собирается объем данных для целой области тела пациента, визуализация переломов и кровеносных сосудов заметно улучшилась. Применяют несколько различных методов трехмерной реконструкции:

Проекция максимальной интенсивности (Maximal Intensity Projection), MIP

MIP - это математический метод, посредством которого из двухмерного или трехмерного набора данных извлекаются гиперинтенсивные воксели. Воксели выбираются из набора данных, полученных иод различными углами, и затем проецируются как двухмерные изображения. Трехмерный эффект получают изменением угла проецирования с малым шагом, и затем, визуализируя восстановленное изображение в быстрой последовательности (т. е. в динамическом режиме просмотра). Этот метод часто используется при исследовании кровеносных сосудов с контрастным усилением.

Мультипланарная реконструкция (Multiplanar Reconstruction), MPR

Эта методика делает возможной реконструкцию изображения в любой проекции, будь то корональная, сагиттальная или криволинейная. MPR является ценным инструментом в диагностике переломов и в ортопедии. Например, традиционные аксиальные срезы не всегда дают полную информацию о переломах. Тончайший перелом без смещения отломков и нарушения кортикальной пластинки может быть более эффективно обнаружен с помощью MPR.

Трехмерная реконструкция затененных поверхностей (Surface Shaded Display), SSD

Этот метод воссоздает поверхность органа или кости, определенную выше заданного порога в единицах Хаунсфилда. Выбор угла изображения, так же как местоположение гипотетического источника света, является ключевым фактором для получения оптимальной реконструкции (компьютер вычисляет и удаляет с изображения участки затенения). На поверхности кости четко виден перелом дистальной части лучевой кости, продемонстрированный с помощью MPR.

Трехмерная SSD также используется при планировании хирургического вмешательства, как в случае травматического перелома позвоночника. Меняя угол изображения, легко обнаружить компрессионный перелом грудного отдела позвоночника и оценить состояние межпозвоночных отверстий. Последние можно исследовать в нескольких различных проекциях. На сагиттальной МПР виден костный фрагмент, который смещается в спинномозговой канал.

Основные правила чтения компьютерных томограмм

  • Анатомическая ориентация

Изображение на мониторе - не просто 2-мерное отображение анатомических структур, оно содержит данные о средней величине поглощения тканями рентгеновского излучения, представленное матрицей, состоящей из 512 x 512 элементов (пикселей). Срез имеет определенную толщину (d S) и представляет собой сумму кубовидных элементов (вокселей) одинакового размера, объединенных в матрицу. Эта техническая особенность лежит в основе эффекта частного объема, объясняемого ниже. Получаемые изображения обычно представляют собой вид снизу (с каудальной стороны). Поэтому правая сторона пациента находится на изображении слева и наоборот. Например, печень, расположенная в правой половине брюшной полости, представлена на левой стороне изображения. А органы, расположенные слева, такие как желудок и селезенка, видны на картинке справа. Передняя поверхность тела, в данном случае представленная передней брюшной стенкой, определяется в верхней части изображения, а задняя поверхность с позвоночником - снизу. Тот же принцип формирования изображения используется при традиционной рентгенографии.

  • Эффекты частного объема

Рентгенолог сам устанавливает толщину среза (d S). Для исследования грудной и брюшной полостей обычно выбирают 8 - 10 мм, а для черепа, позвоночника, глазниц и пирамид височных костей - 2 - 5 мм. Поэтому структуры могут занимать всю толщину среза или только часть ее. Интенсивность окраски вокселя по серой шкале зависит от среднего коэффициента ослабления для всех его компонентов. Если структура имеет одинаковую форму по всей толщине среза, она будет выглядеть четко очерченной, как в случае брюшной аорты и нижней полой вены.

Эффект частного объема возникает, когда структура занимает не всю толщину среза. Например, если срез включает только часть тела позвонка и часть диска, то их контуры оказываются нечеткими. То же самое наблюдается, когда орган суживается внутри среза. Это является причиной плохой четкости полюсов почки, контуров желчного и мочевого пузыря.

  • Различие между узловыми и трубчатыми структурами

Важно уметь отличать увеличенные и патологически измененные ЛУ от сосудов и мышц, попавших в поперечное сечение. Сделать это только по одному сечению бывает очень сложно, потому что эти структуры имеют одинаковую плотность (и одинаковый оттенок серого). Поэтому следует всегда анализировать соседние срезы, расположенные краниальнее и каудальнее. Уточнив, на скольких срезах видна данная структура, можно решить дилемму, видим ли мы увеличенный узел или более-менее длинную трубчатую структуру: лимфоузелбудет определяться только на одном - двух срезах и не визуализируется на соседних. Аорта, нижняя полая венаи мышцы, например, пояснично-подвздошная, видны на протяжении серии кранио-каудальных изображений.

Если возникло подозрение на увеличенное узловое образование на одном срезе, то врачу следует немедленно сравнить соседние сечения, чтобы четко определить, не является ли это «образование» просто сосудом или мышцей в поперечном сечении. Такая тактика хороша и тем, что дает возможность быстро установить эффект частного объема.

  • Денситометрия (измерение плотности тканей)

Если не известно, например, является ли жидкость, найденная в плевральной полости, выпотом или кровью, измерение ее плотности облегчает дифференциальный диагноз. Точно так же, денситометрию можно применить при очаговых образованиях в паренхиме печени или почек. Однако не рекомендуется делать заключение на основании оценки одиночного вокселя, т. к. подобные измерения малодостоверны. Для большей надежности следует расширить «область интереса», состоящую из нескольких вокселей в очаговом образовании, какой-либо структуре или объеме жидкости. Компьютер рассчитывает среднюю плотность и величину стандартного отклонения.

Следует быть особенно внимательным и не упустить артефакты увеличения жесткости излучения или эффекты частного объема. Если образование распространяется не на всю толщину среза, то измерение плотности включает в себя соседствующие с ним структуры. Плотность образования будет измерена корректно, только если оно заполняет всю толщину среза (d S). В этом случае более вероятно, что измерения будут затрагивать само образование, а не соседние структуры. Если ds больше, чем диаметр образования, например, очаг маленьких размеров, это приведет к проявлению эффекта частного объема на любом уровне сканирования.

  • Уровни плотности различных типов тканей

Современные аппараты способны охватить 4096 оттенков серой шкалы, которыми представлены различные уровни плотности в единицах Хаунсфилда (HU). Плотность воды произвольно была принята за 0 HU, а воздуха за - 1000 HU. Экран монитора может отображать максимум 256 оттенков серого. Однако человеческий глаз способен различить только около 20. Поскольку спектр плотностей тканей человека простирается шире, чем эти довольно узкие рамки, можно выбрать и отрегулировать окно изображения таким образом, чтобы были видны только ткани требуемого диапазона плотности.

Средний уровень плотности окна необходимо установить как можно ближе к уровню плотности исследуемых тканей. Легкое, из-за повышенной воздушности, лучше исследовать в окне с настройками низкого значения HU, тогда как для костной ткани уровень окна следует значительно повысить. От ширины окна зависит контрастность изображения: суженное окно более контрастно, поскольку 20 оттенков серого перекрывают только малую часть шкалы плотностей.

Важно отметить, что уровень плотности почти всех паренхиматозных органов находится в пределах узких границ между 10 и 90 HU. Исключением являются легкие, поэтому, как было указано выше, необходимо установить специальные параметры окна. В отношении кровоизлияний следует принять в расчет, что уровень плотности недавно свернувшейся крови примерно на 30 HU выше, чем свежей крови. Затем уровень плотности снова падает в участках старого кровоизлияния и в зонах лизиса тромбов. Экссудат с содержанием белка более 30 г/л нелегко отличить от транссудата (с содержанием белка ниже 30 г/л) при стандартных настройках окна. В дополнение следует сказать, что высокая степень совпадения плотностей, например, у лимфоузлов, селезенки, мышц и поджелудочной железы, делает невозможным установить принадлежность ткани только на основании оценки плотности.

В заключение следует отметить, что обычные значения плотностей тканей также индивидуальны у разных людей и меняются под влиянием контрастных препаратов в циркулирующей крови и в органе. Последний аспект имеет особое значение для исследования мочеполовой системы и касается в/в введения КВ. При этом контрастный препарат быстро начинает выделяться почками, что приводит к повышению плотности паренхимы почек во время сканирования. Этот эффект можно использовать для оценки функции почек.

  • Документирование исследований в различных окнах

Когда изображение получено, для документирования исследования необходимо перенести снимок на пленку (сделать твердую копию). Например, при оценке состояния средостения и мягких тканей грудной клетки устанавливается такое окно, что мышцы и жировая ткань четко визуализируются оттенками серого цвета. При этом используется мягко-тканное окно с центром на 50 HU и шириной 350 HU. В результате серым цветом представлены ткани плотностью от -125 HU (50-350/2) до +225 HU (50+350/2). Все ткани с плотностью ниже чем -125 HU, такие как легкое, выглядят черными. Ткани с плотностью выше +225 HU - белыми, а их внутренняя структура не дифференцируется.

Если необходимо исследовать паренхиму легких, например, когда исключают узловые образования, центр окна должен быть снижен до -200 HU, а ширина увеличена (2000 HU). При использовании данного окна (легочное окно), лучше дифференцируются структуры лёгкого с низкой плотностью.

Для достижения максимальной контрастности между серым и белым веществом головного мозга следует выбрать специальное мозговое окно. Так как плотности серого и белого вещества различаются незначительно, мягкотканное окно должно быть очень узким (80 - 100 HU) и высококонтрастным, а его центр должен находиться в середине значений плотности мозговой ткани (35 HU). При таких установках невозможно исследовать кости черепа, т. к. все структуры плотнее 75 - 85 HU выглядят белыми. Поэтому центр и ширина костного окна должны быть значительно выше - около +300 HU и 1500 HU, соответственно. Метастазы в затылочной кости визуализируются только при использовании костного. но не мозгового окна. С другой стороны, головной мозг практически не виден в костном окне, поэтому небольшие метастазы в веществе мозга будут незаметны. Следуем всегда помнить эти технические детали, т. к. на пленку в большинстве случаев не переносят изображения во всех окнах. Врач, проводящий исследование, просматривает изображения на экране во всех окнах, чтобы не пропустить важные признаки патологии.


Компьютерная томография, сокращенно КТ - это способ получения послойных срезов тела человека или другого объека с помощью рентгеновских лучей. Этот метод для диагностических целей был предложен к использованию в 1972 году, его основателями принято считать Годфри Хаунсфилда и Алана Кормака, получившими за свои разработки Нобелевскую премию. В основе компьютерной томографии лежит измерение разницы ослабления рентгеновского излучения различными тканями, обработка полученных данных компьютером с помощью математических алгоритмов и формирование графического отображения (срезов) органов человека на экране с последующей их интерпретацией врачом-радиологом.

В момент своего появления компьютерная томография произвела революцию в медицинской диагностике, так как впервые появилась возможность рассмотреть послойное изображение тела человека без вмешательства скальпеля хирурга или эндоскопа. Сегодня метод КТ прочно занял свою нишу в диагностике самых разных болезней — прежде всего, онкологических заболеваний, болезней легких, костей, органов живота, внутреннего уха и т.д.

ПРИНЦИП РАБОТЫ КОМПЬЮТЕРНОГО ТОМОГРАФА

Данные, которые могут быть получены при компьютерной томографии, это:

  • характеристики излучения, полученные на выходе рентгеновской трубки
  • характеристики излучения, достигнувшего детектора
  • месторасположение трубки и детектора в каждый момент времени.

Все остальные данные получаются посредством обработки полученной информации. Большая часть сечений при компьютерной томографии имеет ориентацию перпендикулярно по отношению к продольной оси тела.

Для получения среза трубка оборачивается вокруг пациента на 360 градусов, толщина среза при этом задается заранее. В обычном КТ-сканере трубка вращается постоянно, излучение расходится веерообразно. Рентгеновская трубка и принимающее устройство (детектор) спарены, их вращение вокруг сканируемой зоны происходит синхронно: рентгеновское излучение испускается и улавливается детекторами, расположенными на противоположной стороне, практически одновременно. Веерообразное расхождение происходит под углом от 40 до 60 градусов, в зависимости от конкретного аппарата.

Принцип действия компьютерного томографа : вокруг тела пациента вращается рентгеновская трубка. Расположенные на противоположной стороне детекторы улавливают рентгеновское излучение.

Одно изображение формируется обычно при повороте трубки на 360 градусов: измеряются коэффициенты ослабления излучения во множестве точек (современные аппараты имеют возможность собирать информацию с 1400 точек и больше).

МУЛЬТИСПИРАЛЬНАЯ (МНОГОСРЕЗОВАЯ) КОМПЬЮТЕРНАЯ ТОМОГРАФИЯ — ЧТО ЭТО?

Наиболее современными являются томографы с множественными рядами детекторов: с трубкой спарен не один, а несколько рядов детекторов, что способствует укорочению времени исследования, повышает разрешающую способность, позволяет более четко визуализировать мелкие структуры (например, небольшие кровеносные сосуды). В зависимости от количества ряда детекторов компьютерные томографы бывают 16-, 32-, 64-, 128-срезовыми и т.д. Чем больше количество детекторов, тем быстрее можно получить качественные изображения органа.

ОТЛИЧИЕ СПИРАЛЬНОЙ И ОБЫЧНОЙ (ПОШАГОВОЙ) КТ

В чем отличие обычного компьютерного томографа от мультиспирального? При пошаговой (традиционной) томографии срезы получаются следующим образом: происходит один оборот (или несколько оборотов) трубки вокруг заданного участка тела, в результате чего формируется изображение одного среза определенной толщины; затем стол (и пациент) сдвигается в заданном направлении на определенное расстояние, величина которого выбирается заранее. Также выбирается величина, на которую срезы будут перекрывать друг друга — это необходимо, чтобы не упустить мелкие детали изображения. Исследование, таким образом, занимает несколько минут (в зависимости от размеров пациента), требует более точного расчета времени при введении контрастного средства.

В отличие от пошаговой томографии, при спиральной КТ получение данных происходит при продвижении пациента внутри аппарата постоянно, а трубка при этом совершает непрерывное движение по кругу. Скорость движения стола привязана ко времени, необходимому для одного оборота трубки, в результате чего получается массив данных, более пригодных для создания качественных реконструкций и коррекции неточностей изображений.

Устройство мультиспирального (многосрезового) компьютерного томографа: одновременно с движением пациента происходит вращение рентгеновской трубки, испускающей широкий пучок рентгеновских лучей. Траектория сканирования приобретает спиральную форму.

Спиральная компьютерная томография обладает следующими преимуществами перед пошаговой: возможность создания более качественных трехмерных и мультипланарных реконструкций; более высокая скорость проведения исследования; возможность выявления образований, размеры которых меньше толщины среза: если при пошаговой КТ, когда образование попадает между срезами, его не видно, то при спиральной визуализация возможна.

ВТОРОЕ МНЕНИЕ ПО КТ

Несмотря на высокую точность компьютерной томографии, иногда результаты диагностики могут быть неоднозначными или сомнительными. В таких случаях помогает пересмотр данных КТ опытным радиологом, который специализируется на определенном виде обследования. Такая высококвалифицированная и независимая расшифровка снимков КТ позволяет уточнить диагноз и предоставляет лечащему врачу точную информацию для выбора правильного лечения. Получить экспертную расшифровку результатов компьютерной томографии можно с помощью системы консультаций Национальной телерадиологической сети. Достаточно загрузить КТ-снимки с диска и получить точное заключение, составленное по наиболее современным стандартам.