Микробы. их имена. Бактерии такие разные: виды, формы, способы выживания


Полезные бактерии, которые населяют организм человека, называются микробиотой. По численности своей они достаточно обширны — у одного человека их миллионы. При этом все они регулируют здоровье и нормальную жизнедеятельность каждого индивидуума. Учёные утверждают: без полезных бактерий, или, как их ещё называют, мутуалистов, желудочно-кишечный тракт, кожа, дыхательные пути мгновенно подверглись бы атаке болезнетворных микробов и были бы разрушены.

Каким должен быть баланс микробиоты в организме и как его можно скорректировать, чтобы избежать развития серьёзных заболеваний, АиФ.ru спросил у генерального директора биомедицинского холдинга Сергея Мусиенко .

Работники кишечника

Один из важных отделов расположения полезных бактерий — это кишечник. Недаром считается, что именно здесь закладывается вся иммунная система человека. И если бактериальная среда нарушена, то защитные силы организма существенно снижаются.

Полезные бактерии кишечника создают для болезнетворных микробов буквально невыносимые условия существования — кислую среду. Кроме того, полезные микроорганизмы помогают переваривать растительную пищу, так как бактерии питаются клетками растений, содержащими целлюлозу, а вот ферменты кишечника в одиночку с этим не справляются. Также бактерии кишечника способствуют выработке витаминов В и К, которые обеспечивают обмен веществ в костях и соединительных тканях, а также высвобождают энергию из углеводов и способствуют синтезу антител и регулировке нервной системы.

Чаще всего, говоря о полезных бактериях кишечника, имеют в виду 2 самых популярных вида: бифидо- и лактобактерии. При этом главными их назвать, как многие думают, нельзя — их количество всего 5-15% от общего числа. Однако они очень важны, так как доказано их положительное влияние на остальные бактерии, когда такие бактерии могут являться важными факторами благополучия целого сообщества: если их подкармливать или привносить в организм с помощью кисломолочных продуктов — кефиров или йогуртов, они помогают другим важным бактериям выживать и размножаться. Так, например, очень важно восстановить их популяцию при дисбактериозе или после курса приёма антибиотиков. Иначе защитные силы организма повысить будет проблематично.

Биологический щит

Бактерии, которые населяют кожу и дыхательные пути человека, по сути, стоят на страже и надёжно защищают свою зону ответственности от проникновения болезнетворных организмов. Основными из них являются микрококки, стрептококки и стафилококки.

Микробиом кожи за последние сотни лет претерпел изменения, так как человек перешёл от естественной жизни в контакте с природой к регулярному мытью специальными средствами. Считается, что сейчас кожу человека населяют совсем не те бактерии, которые жили раньше. Организм с помощью иммунной системы может отличать опасных от неопасных. Но, с другой стороны, любой стрептококк может стать патогенным для человека, например, если попадёт в порез или любую другую открытую ранку на коже. Избыток бактерий или их патологическая деятельность на коже и в дыхательных путях могут приводить как к развитию различных заболеваний, так и к появлению неприятного запаха. Сегодня есть разработки на основе бактерий, окисляющих аммоний. Их применение позволяет засеять микробиом кожи совершенно новыми организмами, в результате чего не только пропадает запах (результат метаболизма городской флоры), но и изменяется структура кожи — открываются поры и т. д.

Спасение микромира

Микромир каждого человека меняется довольно быстро. И в этом есть несомненные плюсы, так как число бактерий может обновляться самостоятельно.

Разные бактерии питаются разными веществами — чем разнообразнее пища человека и чем больше она соответствует сезону, тем больший выбор есть у полезных микроорганизмов. Однако, если еда обильно наполнена антибиотиками или консервантами, бактерии не выживают, ведь эти вещества как раз и созданы для того, чтобы уничтожать их. Причём совсем не важно, что большая часть бактерий не патогенная. В результате разнообразие внутреннего мира человека уничтожается. А вслед за этим начинаются и различные болезни — проблемы со стулом, высыпания на коже, нарушение метаболизма, аллергические реакции и т. д.

Но микробиоте можно помочь. Причём уйдёт на лёгкую коррекцию всего несколько дней.

Существует большое количество пробиотиков (с живыми бактериями) и пребиотиков (веществ, поддерживающих бактерии). Но основная проблема в том, что они работают у всех по-разному. Анализ показывает, что их эффективность при дисбактериозе составляет до 70-80%, то есть тот или иной препарат может сработать, а может и нет. И здесь следует внимательно следить за ходом лечения и приёма — если средства действуют, вы сразу же заметите улучшения. В случае, если ситуация остаётся без изменений, стоит поменять программу лечения.

Как вариант, можно пройти специальное тестирование, которое изучает геномы бактерий, определяет их состав и соотношение. Это позволяет быстро и грамотно подобрать необходимый вариант питания и дополнительной терапии, которые позволят восстановить хрупкий баланс. Хотя лёгкие нарушения в балансе бактерий человек не ощущает, они всё равно влияют на здоровье — в этом случае можно отмечать частые болезни, сонливость, аллергические проявления. Каждый житель города в той или иной степени имеет дисбаланс в организме, и если он ничего специально не делает для восстановления, то наверняка с определённого возраста у него возникнут проблемы со здоровьем.

Голодание, разгрузки, больше овощей, каша из натуральных круп по утрам — это только немногие варианты пищевого поведения, которое любят полезные бактерии. Но для каждого человека рацион должен быть индивидуален в соответствии с состоянием его организма и с его образом жизни — только тогда он сможет поддерживать оптимальный баланс и всегда чувствовать себя хорошо.

В этот самый момент, человек, когда ты читаешь эти строки, ты получаешь пользу от работы бактерий. От кислорода, который мы вдыхаем, до питательных веществ, которые извлекает желудок из еды, нам нужно благодарить бактерий за процветание на этой планете. В нашем организме микроорганизмов, включая бактерий, больше, чем наших собственных клеток примерно в десять раз. По сути, мы больше микробы, чем люди.

Только недавно мы начали понемногу понимать микроскопические организмы и их влияние на нашу планету и здоровье, но история показывает, что много веков назад наши предки уже использовали мощь бактерий, ферментируя продукты питания и напитки (кто-нибудь слышал о хлебе и пиве?).

В 17 веке мы начали изучать бактерий уже непосредственно в наших телах в тесной связи с нами - во рту. Любопытство Антони ван Левенгука позволило обнаружить бактерии, когда он изучал бляшку между его собственными зубами. Ван Левенгук поэтически описал бактерий, обозначив бактериальную колонию на своих зубах как «немного белого вещества, похожего на застывшее тесто». Разместив образец под микроскопом, ван Левенгук увидел, что микроорганизмы движутся. Так они живые!

Вы должны знать, что бактерии сыграли важнейшую роль для Земли, став ключевым моментом в создании пригодного для дыхания воздуха и биологического богатства планеты, которую мы зовем домом.

В этой статье мы предоставим вам общую картину об этих крошечных, но очень влиятельных микроорганизмах. Мы рассмотрим хорошие, плохие и совершенно причудливые способы, которыми бактерии формируют историю человека и окружающей среды. Для начала рассмотрим, чем бактерии отличаются от других видов жизни.

Основы бактерий

Что ж, если бактерии незаметны невооруженному глазу, откуда мы можем знать так много о них?

Ученые разработали мощные микроскопы, чтобы взглянуть на бактерий - их размеры варьируются от одного до нескольких микрон (миллионной части метра) - и выяснить, как они соотносятся с другими формами жизни, растениями, животными, вирусами и грибками.

Как вы, возможно, знаете, клетки - это строительные кирпичики жизни, из них состоят и ткани нашего тела, и дерево, которое растет за окном. Люди, животные и растения обладают клетками с генетической информацией, заключенной в мембране под названием ядро. Эти типы клеток, которые называются эукариотическими, обладают специальными органеллами, каждая из которых выполняет уникальную работу, помогая клетке работать.

Бактерии, однако, не имеют ядер, и их генетический материал (ДНК) свободно плавает внутри клетки. У этих микроскопических клеток нет органелл и они обладают другими методами воспроизводства и передачи генетического материала. Бактерии считаются прокариотическими клетками.

  • Выживают ли бактерии в среде с кислородом или без
  • Их форма: палочки (bacillus), круги (cocci) или спирали (spirillum)
  • Являются ли бактерии грамотрицательными или грамположительными, то есть обладают ли внешней защитной мембраной, препятствующей окрашиванию внутренностей клетки
  • Как бактерии перемещаются и изучают окружающую среду (у многих бактерий есть жгутики, крошечные плетевидные структуры, которые позволяют им передвигаться в среде)

Микробиология - наука о всех типах микробов, включая бактерии, археи, грибы, вирусы и простейшие - позволяет отличать бактерии от их микробных братьев.

Похожие на бактерии прокариоты, ныне классифицирующиеся как археи, когда-то были вместе с бактериями, но когда ученые узнали о них больше, они предоставили бактериям и археям собственные категории.

Микробное питание (и миазма)

Как и людям, животным и растениям, бактериям нужна пища для выживания.

Некоторые бактерии - автотрофы - используют основные ресурсы вроде солнечного света, воды и химических веществ из окружающей среды для создания пищи (подумайте о цианобактериях, которые превращали солнечный свет в кислород в течение 2,5 миллионов лет). Другие бактерии ученые называют гетеротрофами, потому что они черпают энергию из существующих органических веществ в качестве пищи (к примеру, мертвые листья на лесной почве).

Правда в том, что то, что может быть вкусным для бактерий, будет нам противно. Они развивались, чтобы поглощать все типы продуктов, от разливов нефти и побочных продуктов ядерного распада до человеческих отходов и продуктов разложения.

Но склонность бактерий к конкретному источнику питания может принести пользу обществу. К примеру, специалисты по искусствам из Италии обратились к бактериям, которые могут поедать избыточные слои соли и клея, снижающие долговечность бесценных художественных произведений. Умение бактерий перерабатывать органические вещества также очень полезно для Земли, как в почве, так и в воде.

Исходя из ежедневного опыта, вы хорошо знакомы с запахом, который вызывают бактерии, поглощающие содержимое вашей мусорной корзины, перерабатывая остатки пищи и испуская собственные газообразные побочные продукты. Однако этим все не ограничивается. Вы также можете обвинить бактерии в том, что они вызывают эти неловкие моменты, когда вы сами испускаете газы.

Одна большая семья

Бактерии растут и образуют колонии, когда выпадает шанс. Если еда и экологические условия являются благоприятными, они размножаются и образуют липкие скопления, так называемые биопленки, чтобы выжить на разных поверхностях - от горных пород до зубов вашего рта.

У биопленок есть свои плюсы и минусы. С одной стороны, они взаимовыгодны природным объектам (мутуализм). С другой же - они могут быть серьезной угрозой. К примеру, врачи, которые лечат пациентов с медицинскими имплантатами и устройствами, серьезно озабочены биопленками, поскольку они представляют собой этакую недвижимость для бактерий. После колонизации биопленки могут вырабатывать побочные продукты, которые токсичны - а иногда и смертельны - для человека.

Как и люди в городах, клетки в биопленке сообщаются друг с другом, обмениваются информацией о продуктах питания и потенциальной опасности. Но вместо того, чтобы звонить соседям по телефону, бактерии отправляют записки с помощью химических веществ.

Также бактерии не боятся жить самостоятельно. Некоторые виды разработали интересные способы, чтобы выживать в суровых условиях. Когда еды больше нет, а условия становятся невыносимыми, бактерии консервируют себя, создавая жесткую оболочку - эндоспору, которая помещает клетку в состояние покоя и сохраняет генетический материал бактерии.

Ученые находят бактерии в таких временных капсулах, которые хранились и 100, и даже 250 миллионов лет. Это говорит о том, что бактерии могут самостоятельно храниться в течение длительного времени.

Теперь, когда мы знаем, какие возможности предоставляют колонии бактериям, давайте разберемся, как они попадают туда - путем деления и размножения.

Размножение бактерий

Как бактерии создают колонии? Как и другим формам жизни на Земле, бактериям нужно самокопироваться, чтобы выживать. Другие организмы делают это путем полового размножения, но не бактерии. Но сначала давайте обсудим, почему разнообразие - это хорошо.

Жизнь проходит естественный отбор, ну или селективные силы определенной среды позволяют одному типу процветать и размножаться больше, чем другому. Возможно, вы помните, что гены - это механизм, который инструктирует клетку, что ей делать, и определяет, какого цвета будут ваши волосы и глаза. Вы получаете гены от своих родителей. Половое размножение приводит к мутациям, или случайным изменениям в ДНК, что создает разнообразие. Чем больше генетического разнообразия, тем больше шансов, что организм сможет приспособиться к ограничениям окружающей среды.

Для бактерий воспроизводство не зависит от встречи с правильным микробом; они просто копируют собственную ДНК и делятся на две идентичных клетки. Этот процесс, называемый двоичным делением, происходит, когда одна бактерия делится на две, копируя ДНК и передавая ее обеим частям разделенной клетки.

Поскольку в конечном итоге рожденная клетка будет идентична той, из которой была рождена, такой метод размножения не самый лучший для создания разнообразного генофонда. Как же бактерии приобретают новые гены?

Оказывается, бактерии используют хитрый трюк: горизонтальный перенос генов, или обмен генетическим материалом без воспроизводства. Есть несколько способов, которые используют бактерии для этого. Один способ включает сбор генетического материала из окружающей среды вне клетки - из других микробов и бактерий (через молекулы под названием плазмиды). Другой способ - вирусы, которые используют бактерии в качестве дома. Заражая новую бактерию, вирусы оставляют генетический материал предыдущей бактерии в новой.

Обмен генетическим материалом дает бактериям гибкость к адаптации, и они адаптируются, если чувствуют стрессовые изменения в окружающей среде, такие как нехватка продовольствия или химические изменения.

Понимание того, как адаптируются бактерии, чрезвычайно важно для борьбы с ними и создания антибиотиков в медицине . Бактерии могут обмениваться генетическим материалом так часто, что порой лечение, которое работало раньше, уже не работает.

Ни высоких гор, ни большой глубины

Если задаться вопросом «где бактерии?», проще спросить «где бактерий нет?».

Бактерии обнаруживаются практически везде на Земле. Невозможно представить количество бактерий на планете одновременно, но по некоторым оценкам их число составляет (бактерий и архей вместе) 5 октиллионов - это число с 27 нулями.

Классификация видов бактерий чрезвычайно сложна по понятным причинам. Сейчас есть примерно 30 000 официально идентифицированных видов, но база знаний постоянно растет, и есть мнения, что перед нами только верхушка айсберга от всех видов бактерий.

Правда в том, что бактерии были вокруг на протяжении очень долгого времени. Они породили одни из самых древних окаменелостей, которым 3,5 миллиарда лет. Результаты научных исследований позволяют предположить, что цианобактерии начали создавать кислород примерно 2,3-2,5 миллиарда лет назад в мировом океане, насытив атмосферу Земли кислородом, которым мы дышим по сей день.

Бактерии могут выживать в воздухе, воде, почве, льде, на жаре, на растениях, в кишечнике, на коже - везде.

Некоторые бактерии являются экстремофилами, то есть могут противостоять экстремальным условиям, когда либо очень жарко или холодно, либо отсутствуют питательные вещества и химикаты, которые мы обычно ассоциируем с жизнью. Исследователи обнаружили такие бактерии в Марианской впадине, самой глубокой точке на Земле на дне Тихого океана, возле гидротермальных источников в воде и во льду. Встречаются также бактерии, которые любят высокую температуру - такие, например, окрашивают опалесцирующий бассейн в Йеллоустонском национальном парке.

Плохие (для нас)

Хотя бактерии делают важный вклад в здоровье человека и планеты, у них есть и темная сторона. Некоторые бактерии могут быть патогенными, то есть вызывать заболевания и болезни.

На протяжении истории человечества некоторые бактерии (понятно почему) получили плохую репутацию, вызвав панику и истерию. Взять, к примеру, чуму. Бактерия, вызывающая чуму - чумная палочка Yersinia pestis - не только убила более 100 миллионов человек, но и, возможно, внесла свой вклад в распад Римской империи. До появления антибиотиков, лекарств, которые способствуют борьбе с бактериальными инфекциями, их было очень сложно остановить.

Даже сегодня эти патогенные бактерии серьезно нас пугают. Благодаря выработке устойчивости к антибиотикам, бактерии, вызывающие сибирскую язву, пневмонию, менингит, холеру, сальмонеллез, ангину и прочие болезни, которые еще и остаются рядом с нами, всегда представляют опасность для нас.

Особенно верно это для золотистого стафилококка, бактерии, ответственной за стафилококковые инфекции. Эта «сверхбактерия» приводит к появлению многочисленных проблем в клиниках, поскольку пациенты весьма часто подхватывают эту инфекцию при внедрении медицинских имплантатов и катетеров.

Мы уже говорили о естественном отборе и о том, что некоторые бактерии вырабатывают разнообразные гены, которые помогают им справиться с условиями окружающей среды. Если у вас есть инфекция, и некоторые из бактерий в вашем теле отличаются от других, антибиотики могут поразить большую часть популяции бактерий. Но те бактерии, которые выживут, выработают устойчивость к лекарству и останутся, дожидаясь следующего шанса. Поэтому врачи рекомендуют завершать курс антибиотиков до конца, да и вообще обращаться к ним как можно реже, только в крайнем случае.

Биологическое оружие - еще один пугающий аспект этой беседы. Бактерий можно использовать как оружие в некоторых случаях, в частности, сибирскую язву так и использовали в одно время. Кроме того, не только люди страдают от бактерий. Отдельный вид - Halomonas titanicae - проявил аппетит к затонувшему океанскому лайнеру «Титаник», разъедая металл исторического корабля.

Конечно, бактерии могут приносить не только вред.

Героические бактерии

Давайте изучим хорошую сторону бактерий. В конце концов, эти микробы подарили нам такие вкусные продукты, как сыр, пиво, закваску и другие ферментированные элементы. Они также улучшают здоровье людей и используются в медицине.

Отдельных бактерий можно поблагодарить за формирование человеческой эволюции. Наука собирает все больше данных о микрофлоре - микроорганизмах, которые живут в наших телах, особенно в пищеварительной системе и кишечнике. Исследования показывают, что бактерии, новые генетические материалы и разнообразие, которое они приносят в наши тела, позволяют людям адаптироваться к новым источникам пищи, которые раньше не использовались.

Посмотрим на это с другой стороны: выстилая поверхность вашего желудка и кишечника, бактерии «работают» на вас. Когда вы едите, бактерии и другие микробы помогают вам разбивать и добывать питательные вещества из пищи, особенно углеводы. Чем разнообразнее бактерии, которых мы потребляем, тем больше разнообразия получают наши тела.

Хотя наши знания о наших же микробах весьма скудны, есть основания полагать, что отсутствие некоторых микробов и бактерий в организме может быть связано со здоровьем, метаболизмом и восприимчивости к аллергенам человека. Предварительные исследования на мышах показали, что метаболические заболевания вроде ожирения связаны с разнообразием и здоровой микрофлорой, а не нашей преобладающей точкой зрения «калории приходят, калории уходят».

Сейчас активно исследуются возможности внедрения определенных микробов и бактерий в организм человека, которые могут дать определенные преимущества, однако на момент написания статьи общие рекомендации по их использованию пока не были установлены.

Кроме того, бактерии сыграли важную роль в развитии научной мысли и человеческой медицины. Бактерии сыграли ведущую роль в развитии постулатов Коха 1884 года, которые привели к общему пониманию того, что болезни вызываются определенным видом микробов.

Исследователи, изучавшие бактерии, случайно открыли пенициллин - антибиотик, который спас множество жизней. Также совсем недавно в связи с этим был открыт легкий способ редактировать геном организмов, который может осуществить революцию в медицине.

По сути, мы только начинаем понимать, как извлекать пользу из нашего сожительства с этими маленькими друзьями. К тому же непонятно, кто истинный хозяин Земли: люди или микробы.

Июл 22, 2017 Геннадий

В нашем мире существует огромное количество бактерий. Среди них есть хорошие, а есть и плохие. Какие то мы знаем лучше, другие хуже. В нашей статье мы подобрали список наиболее известных бактерий живущих среди нас и в нашем организме. Статья написана с долей юмора, поэтому строго не судите.

Обеспечивает “фейс – контроль” в твоих внутренностях

Лактобактерии (Lactobacillus plantarum) живущие в пищеварительном тракте человека с доисторических времен, делают большое и важное дело. Как чеснок вампиров, они отпугивают болезнетворные бактерии, не давая им поселиться в твоем животе и привести кишечник в расстройство. добро пожаловать! Соленые огурцы и помидоры, квашеная капуста укрепят силы вышибал, но знай, что тяжелые тренировки и стресс от физической нагрузки сокращают их ряды. Добавь в протеиновый коктейль немного черной смородины. Эти ягоды снижают стресс от фитнеса за счет содержащихся в них антиоксидантов.

2. ЗАЩИТНИК ПУЗА Helicobacter pylori

Остановит приступы голода в 3 часа дня

Еще одни живущие в пищеварительном тракте бактерии, Helicobacter pylori, развиваются с твоего детства и помогают поддерживать здоровый вес на протяжении всей жизни, контролируя гормоны, отвечающие за чувство голода! Съедай по 1 яблоку каждый день.

Эти фрукты вырабатывают в желудке молочную кислоту, в которой не выживает большинство вредных бактерий, но которую обожают Helicobacter pylori. Однако держи Н. pylori в рамках, они могут пойти против тебя и стать причиной язвы желудка. Приготовь на завтрак яичницу со шпинатом: нитраты из этих зеленых листьев у плотняют стенки желудка, защищая его от избытка молочной кислоты.

3. ГОЛОВОЧЕС Pseudomonas aeruginosa

Любит душ, горячие ванны и бассейны

Живущая в теплой воде бактерия Pseudomonas aeruginosa забирается под кожу черепа через поры волосяных фолликулов, вызывая инфекцию, сопровождаемую зудом и болью в пораженных участках.

Не хочешь напяливать шапочку для купания каждый раз, когда принимаешь ванну?Отрази вторжение чесальщика бутербродом с курицей или лососем и яйцами. Большое количество белка необходимо фолликулам, чтобы быть здоровыми и эффективно бороться с инородными телами. Не забудь еще про жирные кислоты, которые абсолютно необходимы для здоровой кожи головы. В этом тебе помогут 4 банки консервированного тунца или 4 средних авокадо в неделю. Больше не надо.

4. Вредные бактерии Corynebacterium minutissimum

Высокотехнологичное простейшее

Вредные бактерии могут таиться в самых неожиданных местах. Вот, например, Corynebacterium minutissimum, вызывающая сыпь, очень любит жить на тачскринах телефонов и планшетных компьютеров. Уничтожь их!

Странно, но никто до сих пор не разработал бесплатного приложения, борющегося с этими микробами. Зато многие компании производят чехлы для телефонов и планшетников с антибактериальным покрытием, которое гарантированно останавливает размножение бактерий. И старайся не тереть руки друг о друга, когда сушишь их после мытья – это может снизить популяцию бактерий на 37%.

5. БЛАГОРОДНЫЙ НЕГОДЯЙ Escherichia coli

Хорошая плохая бактерия

Бактерия Escherichia coli считается причиной десятков тысяч инфекционных заболеваний ежегодно. Но она доставляет нам проблемы,только когда находит способ покинуть толстую кишку и мутировать в болезнетворный штамм. В норме она вполне себе полезна для жизни и обеспечивает организм витамином К, который поддерживает здоровье артерий, предотвращая сердечные приступы.

Чтобы держать в узде эту частенько мелькающую в заголовках новостей бактерию, включи в свой рацион бобовые пять раз в неделю. Клетчатка бобов не расщепляется, а движется в толстую кишку, где Е. coli могут пировать на ней и продолжать нормальный цикл размножения. Наиболее богата клетчаткой черная фасоль, потом идетлимская, или луновидная и только потом -привычная нам обычная красная. Бобовые не только держат бактерии под контролем, но и ограничивают своей клетчаткой твой послеобеденный аппетит, а также повышают эффективность усвоения питательных веществ организмом.

6. НАРЫВАЮЩИЙСЯ Staphylococcusaureus

Поедает молодость твоей кожи

Чаще всего фурункулы и прыщи вызваны бактерией Staphylococcusaureus, которая живет на коже большинства людей. Прыщи -это, конечно, малоприятно, но, проникнув через поврежденную кожу внутрь тела, эта бактерия может вызвать более серьезные заболевания: пневмонию и менингит.

Природный антибиотик дермицидин, токсичный для этих бактерий, содержится в человеческом поте. Хотя бы раз в неделю включай в тренировку высокоинтенсивные упражнения, стараясь работать на 85% от максимума возможностей. И всегда пользуйся чистым полотенцем.

7. МИКРОБ – ОБЖОРА Bifidobacterium animalis

® Живет в кисломолочных продуктах

Бактерии Bifidobacterium animalis населяют содержимое банок с йогуртом, бутылок с кефиром, простоквашей, ряженкой и прочими подобными продуктами. Они сокращают время прохода пищи по толстой кишке на 21%. Пища не застаивается, не происходит образование лишних газов – ты с меньшей вероятностью познаешь проблему под кодовым названием “Пир духа”.

Подкорми бактерии, например, бананом – съешь его после обеда. А на сам обед отлично пойдет паста с артишоками и чесноком. Все эти продукты богаты фруктоолиго – сахаридами – Bifidobacterium animalis обожает этот вид углеводов и ест их с удовольствием, после чего с не меньшим удовольствием размножается. А с ростом популяции увеличиваются твои шансы на нормальное пищеварение.

Мы стараемся дать максимально актуальную и полезную информацию для вас и вашего здоровья. Материалы, размещенные на данной странице, носят информационный характер и предназначены для образовательных целей. Посетители сайта не должны использовать их в качестве медицинских рекомендаций. Определение диагноза и выбор методики лечения остается исключительной прерогативой вашего лечащего врача! Мы не несёт ответственности за возможные негативные последствия, возникшие в результате использования информации, размещенной на сайте сайт

Цитоплазматическая мембрана при электронной микроскопии ультратонких срезов представляет собой трехслойную мембрану (2 темных слоя толщиной по 2,5 нм разделены светлым - промежуточным). По структуре она похожа на плазмалемму клеток животных и состоит из двойного слоя фосфолипидов с внедренными поверхностными, а также интегральными белками, как бы пронизывающими насквозь структуру мембраны. При избыточном росте (по сравнению с ростом клеточной стенки) цитоплазматическая мембрана образует инвагинаты - впячивания в виде сложно закрученных мембранных структур, называемые мезосомами. Менее сложно закрученные структуры называются внутрицитоплазматическими мембранами.

Цитоплазма

Цитоплазма состоит из растворимых белков, рибонуклеиновых кислот, включений и многочисленных мелких гранул - рибосом, ответственных за синтез (трансляцию) белков. Рибосомы бактерий имеют размер около 20 нм и коэффициент седиментации 70S, в отличие от 80S-рибосом, характерных для эукариотических клеток. Рибосомные РНК (рРНК) - консервативные элементы бактерий («молекулярные часы» эволюции). 16S рРНК входит в состав малой субъединицы рибосом, а 23S рРНК - в состав большой субъединицы рибосом. Изучение 16S рРНК является основой геносистематики, позволяя оценить степень родства организмов.
В цитоплазме имеются различные включения в виде гранул гликогена, полисахаридов, бета-оксимасляной кислоты и полифосфатов (волютин). Они являются запасными веществами для питания и энергетических потребностей бактерий. Волютин обладает сродством к основным красителям и легко выявляется с помощью специальных методов окраски (например, по Нейссеру) в виде метахроматических гранул. Характерное расположение гранул волютина выявляется у дифтерийной палочки в виде интенсивно прокрашивающихся полюсов клетки.

Нуклеоид

Нуклеоид - эквивалент ядра у бактерий. Он расположен в центральной зоне бактерий в виде двунитевой ДНК, замкнутой в кольцо и плотно уложенной наподобие клубка. Ядро бактерий, в отличие от эукариот, не имеет ядерной оболочки, ядрышка и основных белков (гистонов). Обычно в бактериальной клетке содержится одна хромосома, представленная замкнутой в кольцо молекулой ДНК.
Кроме нуклеоида, представленного одной хромосомой, в бактериальной клетке имеются внехромосомные факторы наследственности - плазмиды, представляющие собой ковалентно замкнутые кольца ДНК.

Капсула, микрокапсула, слизь

Капсула - слизистая структура толщиной более 0,2мкм, прочно связанная с клеточной стенкой бактерий и имеющая четко очерченные внешние границы. Капсула различима в мазках-отпечатках из патологического материала. В чистых культурах бактерий капсула образуется реже. Она выявляется при специальных методах окраски мазка (например, по Бурри-Гинсу), создающих негативное контрастирование веществ капсулы: тушь создает темный фон вокруг капсулы. Капсула состоит из полисахаридов (экзополисахаридов), иногда из полипептидов, например, у сибиреязвенной бациллы она состоит из полимеров D-глутаминовой кислоты. Капсула гидрофильна, препятствует фагоцитозу бактерий. Капсула антигенна: антитела против капсулы вызывают ее увеличение (реакция набухания капсулы).
Многие бактерии образуют микрокапсулу - слизистое образование толщиной менее 0,2мкм, выявляемое лишь при электронной микроскопии. От капсулы следует отличать слиэь - мукоидные экзополисахариды, не имеющие четких границ. Слизь растворима в воде.
Бактериальные экзополисахариды участвуют в адгезии (прилипании к субстратам), их еще называют гликокаликсом. Кроме синтеза
экзополисахаридов бактериями, существует и другой механизм их образования: путем действия внеклеточных ферментов бактерий на дисахариды. В результате этого образуются декстраны и леваны.

Жгутики

Жгутики бактерий определяют подвижность бактериальной клетки. Жгутики представляют собой тонкие нити, берущие начало от цитоплазматической мембраны, имеют большую длину, чем сама клетка. Толщина жгутиков 12-20 нм, длина 3-15 мкм. Они состоят из 3 частей: спиралевидной нити, крюка и базального тельца, содержащего стержень со специальными дисками (1 пара дисков - у грамположительных и 2 пары дисков - у грамотрицательных бактерий). Дисками жгутики прикреплены к цитоплазматической мембране и клеточной стенке. При этом создается эффект электромотора со стержнем-мотором, вращающим жгутик. Жгутики состоят из белка - флагеллина (от flagellum - жгутик); является Н-антигеном. Субъединицы флагеллина закручены в виде спирали.
Число жгутиков у бактерий различных видов варьирует от одного (монотрих) у холерного вибриона до десятка и сотен жгутиков, отходящих по периметру бактерии (перитрих) у кишечной палочки, протея и др. Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки.

Пили

Пили (фимбрии, ворсинки) - нитевидные образования, более тонкие и короткие (3-10нм х 0, 3-10мкм) , чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина, обладающего антигенной активностью. Различают пили, ответственные за адгезию, то есть за прикрепление бактерий к поражаемой клетке, а также пили, ответственные за питание, водносолевой обмен и половые (F-пили), или конъюгационные пили. Пили многочисленны - несколько сотен на клетку. Однако, половых пилей обычно бывает 1-3 на клетку: они образуются так называемыми "мужскими" клетками-донорами, содержащими трансмиссивные плазмиды (F-, R-, Col-плазмиды). Отличительной особенностью половых пилей является взаимодействие с особыми "мужскими" сферическими бактериофагами, которые интенсивно адсорбируются на половых пилях.

Споры

Споры - своебразная форма покоящихся фирмикутных бактерий, т.е. бактерий
с грамположительным типом строения клеточной стенки. Споры образуются при неблагоприятных условиях существования бактерий (высушивание, дефицит питательных веществ и др.. Внутри бактериальной клетки образуется одна спора (эндоспора). Образование спор способствует сохранению вида и не является способом размножения, как у грибов. Спорообразующие бактерии рода Bacillus имеют споры, не превышающие диаметр клетки. Бактерии, у которых размер споры превышает диаметр клетки, называются клостридиями, например, бактерии рода Clostridium (лат. Clostridium - веретено). Споры кислотоустойчивы, поэтому окрашиваются по методу Ауески или по методу Циля-Нильсена в красный, а вегетативная клетка в синий цвет.

Форма спор может быть овальной, шаровидной; расположение в клетке -терминальное, т.е. на конце палочки (у возбудителя столбняка), субтерминальное - ближе к концу палочки (у возбудителей ботулиэма, газовой гангрены) и центральное (у сибиреязвенной бациллы). Спора долго сохраняется из-за наличия многослойной оболочки, дипиколината кальция, низкого содержания воды и вялых процессов метаболизмов. В благоприятных условиях споры прорастают, проходя три последовательные стадии: активация, инициация, прорастание.

Бактерии представляют собой одноклеточные организмы, лишенные хлорофилла. Эта группа микроорганизмов наиболее многочисленна, широко распространена в природе и хорошо изучена. Среди бактерий имеется значительное число возбудителей инфекционных заболеваний человека и животных.

Форма и размеры бактерий. По форме клеток бактерии разделяются на шаровидные — кокки; палочковидные или цилиндрические — собственно бактерии; извитые— вибрионы и спириллы. Между основными формами имеются переходные. Различные формы бактерий показаны на рис. 1.

Кокки (от греч. coccus— зерно, ягода) различаются между собой в зависимости от расположения клеток после их деления. Одиночные кокки называются микрококками (рис. 1,1), парные — диплококками. Если кокки после деления не расходятся, а образуют цепочку, их называют стрептококками (рис. 1,3). Все эти кокки делятся только в одной плоскости. При делении в двух взаимно перпендикулярных плоскостях могут образоваться сочетания из четырех кокков — тетракокки (рис. 1,6), а при делении в трех взаимно перпендикулярных плоскостях — сарцины (от лат. sarcio — связывать; рис. 1,7), состоящие из 8—16 клеток. Если деление происходит без определенного порядка, кокки остаются вместе и образуют скопления, напоминающие грозди винограда, — стафилококки (рис.1,2). Обычно размеры кокков достигают 1—1,5 мкм.

Среди кокков имеются возбудители различных заболеваний человека: диплококки-пневмококки (рис. 1,5), мейингококки и гонококки (рис. 1,4) вызывают соответственно воспаление легких, менингит и гонорею; стафилококки и стрептококки — различные гнойные заболевания человека и животных. Многие кокки являются обитателями различных полостей и кожи человека и широко распространены во внешней среде.

Палочковидные бактерии (от греч. bacteria— палочка) имеют цилиндрическую форму и обычно располагаются одиночно (рис. 1,8—9), но иногда попарно (диплобактерии) или в виде цепочек (стрептобактерии). Палочки могут быть прямыми, слегка изогнутыми и веретенообразными; размеры их достигают 1—5x0,5— 1 мкм. Палочки, не образующие спор, называют бактериями, а спорообразующие — бациллами (аэробы) и клостридиями (анаэробы). Под воздействием различных факторов форма и величина бактерий могут меняться. Способность бактерий изменять свою форму и величину называется полиморфизмом.

Среди бактерий много возбудителей инфекционных заболеваний: чумы, сибирской язвы, бруцеллеза, столбняка, газовой гангрены, дифтерии, кишечных инфекций.

Извитые формы бактерий имеют вид спирали, состоящей из нескольких завитков. Среди них различают вибрионы, имеющие один завиток (рис. 1, 10), и спириллы с 2—3 завитками (рис. 1, 11).

Вибрионы — слабоизогнутые клетки, напоминающие запятую, длиной 1—3 мкм, очень подвижные за счет жгутика, расположенного на конце клетки. Среди вибрионов наибольшее значение имеет возбудитель холеры.
Спириллы — безвредные микроорганизмы, живущие в сточных или загрязненных водах, гниющих отбросах. Только Spirillum minus вызывает у человека болезнь укуса крысы—содоку.

Структура бактерий. Бактериальная клетка состоит из клеточной стенки, цитоплазматической мембраны и цитоплазмы, которая содержит ядерное вещество, различные органеллы и включения. Кроме того, у многих бактерий имеются капсула и слизистый слой, жгутики и пили (рис. 2).


Клеточная стенка. Оболочка, которая отделяет микробную клетку от окружающей среды, определяет и сохраняет ее форму, получила название клеточной стенки (рис. 3). Она характеризуется прочностью, эластичностью и гибкостью. Клеточная стенка выполняет жизненно важную функцию: предохраняет клетку от осмотического лизиса, так как давление внутри клетки в цитоплазме выше, чем в окружающей среде. Обладая избирательной проницаемостью, клеточная стенка обеспечивает прохождение внутрь клетки различных веществ и выведение наружу продуктов обмена. Через клеточную стенку легко проникают вода, глюкоза, аминокислоты, жирные кислоты, имеющие молекулы небольших размеров. Более крупные молекулы органических веществ не могут проникнуть внутрь клетки без предварительного расщепления их на более мелкие с помощью ферментов, выделяемых клеткой.

Клеточная стенка бактерий имеет сложную структуру и построена из компонентов двух типов. Прочность и твердость клеточной стенке придает сеть микрофибрилл, которая погружена в содержимое — матрикс. Микрофибриллы являются гликопептидами (пептидогликаны, или муреины). Слой гликопептидов определяет и сохраняет форму бактериальной клетки. Структура и химический состав клеточных стенок грамположительных и грамотрицательных бактерий различны.

Клеточная стенка грамположительных бактерий имеет наиболее простое строение. Структура ее однородна, она толще (10—15 нм), чем клеточная стенка грамотрицательных бактерий. Основная масса клеточной стенки — гликопептиды (до 90%). Сеть микрофибрилл погружена в матрикс, содержащий полисахариды (до 90%) и тейхоевые кислоты. Белки обычно отсутствуют, а липиды составляют всего 2,5%. Однако некоторые грамположительные бактерии, например коринебактерии и микобактерии, содержат в клеточной стенке большое количество липидов.

Клеточная стенка грамотрицательных бактерий имеет сложное строение и по химическому составу значительно отличается от клеточных стенок грамположительных бактерий. Внутренний слой клеточной стенки — тонкий мешочек молекул гликопептида, состоящий из одного или двух молекулярных слоев (2—3 нм). Поверх него лежит широкий внешний слой (7—8 нм) из неплотно упакованных молекул белка и фосфолипидов, над которым располагается третий слой — липополисахариды. Возможна и другая структура внешнего слоя клеточной стенки: в двойной слой фосфолипидов включены белки и липополисахариды.

В клеточной стенке этих бактерий много липидов (до 25%), белка и полисахаридов.

Цитоплазматическая мембрана. Непосредственно под клеточной стенкой расположена цитоплазматическая мембрана, очень плотно прилегающая к ней (рис.4). Цитоплазматическая мембрана имеет большое значение в жизни клетки. Она действует как осмотический барьер, концентрируя внутри клетки питательные вещества и способствуя выведению продуктов обмена. Через нее проходят частицы, имеющие молекулы небольших размеров (фрагменты ДНК, белки с низкой молекулярной массой— внеклеточные ферменты). Белки цитоплазматической мембраны — пермеазы выполняют функцию транспорта — переноса органических и неорганических веществ в клетку. Дитоплазматическая мембрана является местом биосинтеза некоторых составных частей клетки, принимает участие в процессах деления бактерий. На внутренней поверхности ее находятся специальные участки, к которым прикрепляется ДНК в процессе ее удвоения (репликации). Рост мембраны обеспечивает разделение генома клетки после завершения процесса репликации. У аэробных бактерий в цитоплазматической мембране находится цепочка переноса электронов, обеспечивающих энергетический обмен клетки.

Цитоплазматическая мембрана очень тонка (не более 8—10 нм). На электронных микрофотографиях она видна как двойная линия, разделенная светлым промежутком (трехслойная). Более половины массы цитоплазматической мембраны составляют белки и 20—30% — фосфолипиды. Цитоплазматическая мембрана бактерий имеет структуру элементарной биологической мембраны — двойного слоя фосфолипидов, на поверхности которых расположены белки.
При некоторых воздействиях на бактериальную клетку, например при помещении ее в гипертонический раствор хлорида натрия, мембрана может отделиться от клеточной стенки и стать хорошо видимой (см. рис. 3).

Цитоплазма. Содержимое бактериальной клетки — ограниченное цитоплазматической мембраной прозрачное, слегка вязкое вещество жидкой консистенции. Цитоплазма клеток бактерий является коллоидальной системой, состоящей из воды, протеинов, жиров, углеводов, различных минеральных и других веществ, соотношения которых варьируют в зависимости от вида бактерий и возраста клетки.
В цитоплазме бактерии находятся ядро клетки — нуклеоид, рибосомы, мезосомы, а также различные гранулы запасных питательных веществ, пигменты, жиры.

Нуклеоид. Содержит ДНК, которая связана с небольшим количеством специфического основного белка— гистона (нуклеопротеид) и является хранителем наследственной информации в клетке. В отличие от ядер других микроорганизмов, например простейших, нуклеоид бактерий не имеет ясно выраженной мембраны, ограничивающей его от остальной части цитоплазмы (см. рис. 4). Молекула ДНК по схеме, предложенной в 1953 г. Уотсоном и Криком, состоит из двух полинуклеотидных цепей, закрученных одна вокруг другой наподобие винтовой лестницы (рис. 5). Наружную поверхность такой двойной спирали образует сахар — дезоксирибоза (С), которая чередуется с остатками фосфорной кислоты (Ф). Внутри спирали перпендикулярно к ее оси, как ступеньки лестницы, расположены плоские молекулы азотистых оснований: пурины — аденин (А), гуанин (Г) и пиримидины — тимин (Т), цитозин (Ц). Каждый пурин вследствие своей химической структуры обязательно соединен с пиримидином, поэтому нить ДНК имеет равномерную толщину, около 0,2 нм, на всем протяжении. Длина молекулы ДНК может быть в сотни миллионов раз больше. Например, общая длина хромосомы кишечной палочки 1— 1,4 мм.Пурины и пиримидины соединены между собой водородными связями, которые легко разрываются. Каждое азотистое основание прикреплено только к сахару наружной цепи — дезоксирибозе. Дезоксирибоза, фосфат и азотистое основание образуют один мономер ДНК, называемый нуклеотидом (Н). Для ДНК многих бактерий характерна кольцевая структура в виде замкнутого кольца. У большинства прокариотов только одна бактериальная хромосома.

Рибосомы. Помимо ДНК, в клетке есть вторая нуклеиновая кислота — рибонуклеиновая (РНК), которая в отличие от ДНК состоит из одной цепи, имеет сахар рибозу вместо дезоксирибозы и урацил вместо тимина. Основная масса РНК связана с белком в форме маленьких частиц, или рибосом, которые являются центрами синтеза белка. Рибосомы образуют большие агрегаты, называемые полирибосомами, или полисомами, состоящими из 7—8 рибосом и более. Химический состав рибосом: 40—60% РНК и 60—40% белка. У бактерий рибосомы свободно лежат в цитоплазме. Количество их в каждой клетке может быть более 100. Помимо рибосомальной РНК (рРНК), в цитоплазме бактерии находится еще информационная РНК (иРНК, или мРНК). Она осуществляет функцию переноса генетической информации от ДНК к полисомам. У кишечной палочки она составляет 2— 4 % от всей РНК. Третья рибонуклеиновая кислота — транспортная (тРНК)—выполняет функцию транспортировки в рибосомы аминокислот, необходимых для синтеза белка.

Мезосомы. У некоторых бацилл из цитоплазматической мембраны возникают сферические, закрученные в завиток структуры — так называемые мезосомы. Функция их пока не совсем ясна. Возможно, они участвуют в процессе деления клетки или в окислительно-восстановительных процессах, выполняя роль митохондрий.

Гранулы. В цитоплазме бактерий находятся различные гранулы, многие из которых содержат запасные питательные вещества. Источником углерода или энергии служат гранулы безазотистых органических веществ — полисахариды, состоящие из молекул глюкозы. Одни гранулы состоят из крахмала и окрашиваются йодом в синий цвет (иогены или гранулеза), другие содержат гликоген и окрашиваются йодом в красновато-коричневый цвет. Сернистые бактерии накапливают в цитоплазме капельки серы, некоторые бактерии синтезируют и накапливают липидные включения, которые видны в форме мелких капель благодаря большой степени их преломления.

У некоторых микробов в цитоплазме находятся зерна волютина, впервые обнаруженные у спирилл (Spirillum volutans). Они являются запасными питательными веществами, состоящими из неорганических полифосфатов и соединений, близких к нуклеиновым кислотам. Волютин в виде крупных гранул накапливается в цитоплазме бактерий при выращивании их на средах, содержащих углеводы. Зерна волютина при окраске их метиленовым синим обнаруживают явления метахромазии: синяя краска придает им ярко-красный цвет. У некоторых бактерий, например коринебактерий, обнаружение зерен волютина является ценным диагностическим признаком.

Капсула и слизистый слой. У многих бактерий с наружной стороны клеточной стенки расположен диффузный гомогенный слизистый слой различной толщины (см. рис. 2,1). Этот слой можно выявить при определенных способах окраски или соответствующем освещении.

Капсулой называют слой, который сохраняет тесную связь с клеточной стенкой и служит внешним покровом клетки. Толщина его ограничена, и капсула четко выявляется при негативном окрашивании по методу Гинса: на темном фоне препарата видна окрашенная в красный цвет бактериальная клетка, окруженная бесцветной капсулой. Толщина капсул у бактерий различна: от долей микрометра до 10 мкм. Капсулу величиной менее 0,2 мкм часто называют микрокапсулой. Поверхностные структуры типа капсул описаны у пневмококков, возбудителей сибирской язвы, коклюша, гонореи, группы капсульных бактерий — клебсиелл. У многих видов бактерий капсула появляется лишь при определенных условиях, часто неблагоприятных. Возбудители сибирской язвы, коклюша, гонореи, пневмококки образуют капсулу, попадая в организм человека или животного. В этом случае капсула выполняет защитную роль, предохраняя микроб от действия антител, фагоцитов и других защитных факторов организма. Группа капсульных бактерий сохраняет капсулу постоянно: и в организме человека, и пр,и культивировании на питательных средах. Химический состав капсул зависит от вида бактерий. Основными компонентами капсулы являются вода (до 98%) и полисахариды. В капсуле сибиреязвенных бацилл найдены полипептиды, а в капсуле стрептококка — белок М.

Слизистые слои, образующиеся вокруг поверхности некоторых бактерий, отличаются от капсул более рыхлым строением, толщиной, способностью частично отделяться от образовавшей их клетки. Материал, составляющий слизистый слой, часто обнаруживают в питательной среде, в которой культивируют микроорганизмы.

Защитные функции капсулы разнообразны. Помимо предохранения микроба от действия защитных факторов макроорганизма, капсула предохраняет микроб от притока в клетку большого количества жидкости (осмотический барьер), а также от высыхания при неблагоприятных условиях среды обитания.

Жгутики. Некоторые бактерии обладают подвижностью, которая осуществляется с помощью жгутиков. Число и расположение жгутиков являются характерным видовым признаком бактерий, который используют для дифференциации микроорганизмов. По расположению и числу жгутиков различают бактерии: монотрихи, имеющие один жгутик на одном из полюсов клетки; амфитрихи, у которых на каждом полюсе расположено по одному жгутику; лофотрихи — с пучком жгутиков на одном полюсе (сюда же относят бактерии, которые имеют пучки жгутиков на обоих полюсах), и перитрих и, жгутики у которых расположены по всей поверхности тела (рис. 6).

Жгутики представляют собой тонкие, спиральные, нитевидные фибриллы толщиной 12—18 нм. Длина жгутика может в 10 раз превышать длину самой бактерии. Жгутик отходит от специального образования — базального тельца, расположенного в цитоплазме на внутренней поверхности цитоплазматической мембраны (рис. 7). Базальное тельце имеет сложное строение, в нем находится механизм в виде двух кольцевых пластинок, вращение которых относительно друг друга сообщает движение жгутику.


Жгугики бактерий — белковые нити, состоящие из белка флагеллина, белковые мономеры которого собраны в спиральные цепи, закрученные вокруг полой сердцевины. При движении жгутик вращается вокруг своей длинной оси по или против часовой стрелки. Движение бактерий можно увидеть при исследовании их в живом состоянии с помощью метода висячей или раздавленной капли и при использовании специальных способов окраски в световом микроскопе. Скорость активного движения с помощью жгутиков у некоторых бактерий очень велика: за 1 с они могут пересечь расстояние, в 20 раз превышающее их длину. Механическое удаление приводит к потере подвижности бактерий, но не препятствует их росту и размножению.

Пили (ворсинки). Прямые нитевидные образования, обнаруженные у сальмонелл, эшерихий, протея, называют ворсинками, а также бахромками, фимбриями, ресничками, пилями (рис. 8). Пили тоньше жгутиков бактерий и короче их; состоят из особого белка пилина, мономеры которого, как и у жгутиков, расположены по спирали. Пили различаются по диаметру и длине; толщина пилёй может быть от 4—10 до 35 нм. Количество пил ей на одну бактериальную клетку может достигать нескольких сотен. Пили обеспечивают способность бактерий к прилипанию (адгезия) друг к другу или к субстрату, например к эпителиальным клеткам слизистой оболочки кишечника.


Некоторые пили, например F-ворсинки, выполняют половые функции у бактерий. Они обеспечивают передачу наследственного материала (ДНК) из одной бактериальной клетки в другую, образуя мостик между двумя клетками. Эти ворсинки шире и длиннее остальных и на конце имеют шаровидное утолщение.

Споры. Некоторые бактерии, попадая в неблагоприятные условия существования, образуют внутри тела спору (эндоспора). Эндоспора представляет собой внутриклеточное, сильно преломляющее свет образование, устойчивое (резистентное) к различным вредным факторам внешней среды: высыханию, действию высоких температур, химических и дезинфицирующих веществ (рис. 9).

Спорообразование свойственно преимущественно палочковидным формам бактерий: бациллам и клостридиям. У бактерий других видов оно встречается очень редко. Споры имеют сферическую, овальную или эллипсоидную форму. Диаметр споры обычно равен диаметру клетки, в которой она образуется, или несколько превышает его, а длина споры составляет 1/4-1/3 длины клетки бактерии. Размер и положение внутри бактериальной клетки зависят от вида, возраста и условий выращивания бактерий. Споры могут располагаться в центре клетки — центрально (рис. 9,1), как, например, у возбудителя сибирской язвы; ближе к концу — субтерминально, у возбудителя газовой гангрены (рис. 9,3); на самом конце — терминально, у возбудителя столбняка и ботулизма (рис. 9,2). Форма и расположение споры в бактериальной клетке могут быть отличительными признаками некоторых возбудителей: например, столбнячная палочка имеет круглую спору, расположенную на конце бактерии, и похожа на барабанную палочку, а ботулиническая палочка — овальную спору также на конце бактериальной клетки и напоминает теннисную ракетку. Созревшая спора имеет сложную структуру.

Процесс спорообразования происходит при попадании бактерии в неблагоприятные условия (недостаток питательных веществ, воды, большое содержание кислорода, действие высоких и низких температур и т. д.). Спорообразование начинается с появления «спорогенной зоны»: в бактериальной клетке образуется уплотненный участок, где наблюдается обособление ядерного материала и части цитоплазмы с помощью тонкой перегородки. По мере развития и созревания споры закладываются ее стенки, число и толщина которых варьируют у разных видов бактерий (стадия проспоры). Затем проспора уплотняется, уменьшается в объеме, превращается в зрелую спору, которая окружена плотной многослойной оболочкой, состоящей в основном из белков, липидов и гликопептидов. Весь процесс спорообразования длится 18—24 ч. По химическому составу споры отличаются высоким содержанием липидов, солей кальция; вода в споре находится в связанном с другими соединениями состоянии. Эти особенности спор и обусловливают их высокую устойчивость к различным факторам: кипячению, действию высоких и низких температур, высушиванию, ультрафиолетовому облучению и т. д. При попадании в благоприятные условия существования (наличие питательных веществ, достаточной влажности и оптимальной температуры) спора прорастает в вегетативную форму: она набухает, в оболочке появляется отверстие, через которое вытягивается росток, превращающийся затем в палочку. Весь процесс длится 4—5 ч.

Одной клетке соответствует только одна спора, поэтому спорообразование у бактерий не связано с процессом размножения, как у грибов, а является лишь способом переживания в неблагоприятных условиях внешней среды.

Спорообразующие микробы широко распространены в почве, воздухе, сохраняясь там десятки лет. Среди них встречаются патогенные виды — бациллы сибирской язвы, возбудители газовой гангрены, столбняка и ботулизма.

Сферопласты и протопласты. Бактериальная клетка в определенных условиях может быть лишена клеточной стенки. Эту стенку можно разрушить действием лизоцима или пенициллина, который нарушает синтез гликопептидов. Бактерии, целиком лишенные клеточной стенки, называются протопластами, а при сохранении небольших участков ее—сферопластами. Эти образования покрыты тонкой и нежной цитоплазматической мембраной и имеют сферическую форму. Цитоплазматическая мембрана неспособна сдержать высокое осмотическое давление цитоплазмы, поэтому для сохранения жизнеспособности сферопласты и протопласты помещают в специально осмотически уравновешенные среды, содержащие 5—20% сахарозы и сыворотку лошади. В этих средах они сохраняют округлую форму, а некоторые —даже жгутики. Однако такие протопласты неподвижны вследствие нарушения у них механизмов, управляющих движением жгутиков. Спустя некоторое время после хранения сферопластов и протопластов в растворах сахарозы они начинают разрушаться (лизируются) и в среде появляются мелкие зерна и пустые пузырьки — «тени» протопластов. При определенных условиях сферопласты, частично сохраняющие клеточную стенку, могут размножаться на плотных питательных средах и реверсировать (возвращаться) в исходные формы, что сближает их с нестабильными L-формами бактерий типа В.

L-формы бактерий. При частичном или полном разрушении клеточных стенок многие виды бактерий могут образовывать L-формы. Впервые они были обнаружены Клинебергер-Нобель в 1935 г. Название их происходит от первой буквы института Листера (L), в котором они были открыты.

Характерным для L-форм бактерий является их сходство с микроорганизмами группы плевропневмонии крупного рогатого скота (PPLO), которые отнесены в настоящее время к микоплазмам. Однако L-формы отличает от микоплазм то, что им несвойственна потребность в питательных веществах, в которых нуждаются микоплазмы. Генетически L-формы идентичны исходным формам, из которых они получены. У некоторых из них частично сохранена клеточная стенка (L-формы типа В), поэтому они могут превращаться в исходные формы бактерий. Образование L-форм происходит под «действием пенициллина, который нарушает синтез мукопептидов клеточной стенки. Иногда эти формы возникают спонтанно.

По морфологии L-формы разных видов бактерий и других микроорганизмов (трепонемы, дрожжи) сходны между собой. Они представляют шаровидные, вакуолизи- рованные образования величиной от 1—8 мкм до мельчайших— 250 нм, способных, как и вирусы, проходить через поры фарфоровых фильтров. Однако в отличие от вирусов L-формы можно выращивать на искусственных питательных средах, добавляя к ним пенициллин, сахара, лошадиную сыворотку. При удалении из такой среды пенициллина L-формы (тип В) вновь превращаются в. исходные формы бактерий. Этот процесс называется реверсией. Однако существуют стабильные L-формы бактерий (тип А), возвращение которых к исходной форме затруднено или невозможно. В настоящее время получены L-формы протея, кишечной палочки, холерного вибриона, бруцелл, возбудителей газовой гангрены, столбняка и других микроорганизмов.