Система внешнего дыхания спортсмена оценивается по результатам. Исследование функционального состояния системы внешнего дыхания. Функциональные возможности дыхательной системы


Современные физиологические исследования осуществляются на основе новых методических подходов, которые дают возможность детально изучить функциональное состояния той или иной системы организма как? норме, так и при воздействии различных факторо? внешней среды, физических и других нагрузках.

ЖЕЛ (жизненная емкость легких)

ЖЕЛ - один из важнейших показателей функционального состояния системы внешнего дыхания.

ЖЕЛ измеряется с помощью метода спирометрии и спирографии.

Единицы измерения ЖЕЛ - литры или миллилитры. Величина ЖЕЛ зависит от пола, возраста, длины и массы тела, окружности грудной клетки, спортивной специализации, от размеро? легких и силы дыхательной мускулатуры. Значения ЖЕЛ увеличиваются с возрастом? связи с ростом грудной клетки и легких, она максимальна? возрасте 18-35 лет. Значения ЖЕЛ находятся? широких пределах - ? среднем от 2,5 до 8 литров.

Величина ЖЕЛ служит прямым показателем функциональных возможностей системы внешнего дыхания и косвенным показателем максимальной площади дыхательной поверхности легких, на которой происходит диффузия кислорода и углекислого газа.

Оценка ЖЕЛ

Для оценки фактической ЖЕЛ (Ф ЖЕЛ) ее сравнивают с должной ЖЕЛ (Д ЖЕЛ). Должная ЖЕЛ - это теоретически рассчитанная для данного человека величина с учетом его пола, возраста, роста и массы тела.

Нормальной считается такая фактическая ЖЕЛ (Ф ЖЕЛ), которая составляет 100+15% должной ЖЕЛ (Д ЖЕЛ), т.е. 85115% должной. Если Ф ЖЕЛ меньше 85%, то это свидетельствует о снижении потенциальных возможностей системы внешнего дыхания. Если Ф ЖЕЛ выше 115%, то это свидетельствует о высоких потенциальных возможностях системы внешнего дыхания, обеспечивающей повышенную легочную вентиляцию, необходимую при выполнении физических нагрузок.

Наибольшие значения ЖЕЛ наблюдаются у спортсменов, тренирующихся преимущественно на выносливость и обладающих самой высокой кардиореспираторной производительностью. (Васильева В.В.; Трунин В.В., 1996).

Несмотря на то, что внешнее дыхание не является главным лимитирующим звеном? комплексе систем, транспортирующих кислород, ? условиях спортивной деятельности к нему предъявляется чрезвычайно высокие требования, реализация которых обеспечивает эффективное функционирование всей кардиореспираторной системы.

ЖЕЛ включает? себя ДО (дыхательный объем), РО вдоха (резервный объем вдоха), РО выдоха (резервный объем выдоха).

· Дыхательный объем (ДО) - объем воздуха, поступающий? легкие за 1 вдох при спокойном дыхании. В среднем это 500 мл (значения от 300 до 900 мл). Из них 150 мл - это воздух так называемого функционального мертвого пространства? гортани, трахее, бронхах. Воздух мертвого пространства не принимает активного участия? газообмене, но, смешиваясь с вдыхаемым воздухом, согревает и увлажняет его.

· Резервный объем вдоха (РО вдоха) - это максимальный объем воздуха, который можно вдохнуть после спокойного вдоха. В среднем это 1500-2000 мл.

· Резервный объем выдоха (РО выдоха) - это максимальный объем воздуха, который можно выдохнуть после спокойного выдоха. В среднем это 1500-2000 мл.

Таким образом:

Общий объем легких (ОЕЛ) = ЖЕЛ + ОО ЖЕЛ = ДО + РО вдоха + РО выдоха ОЕЛ = ДО + РО вдоха + РО выдоха + ОО

Минутный объем дыхания (МОД) - легочная вентиляция

Минутный объем дыхания - объем воздуха, выдыхаемый из легких за 1 минуту. Минутный объем дыхания - это легочная вентиляция. Легочная вентиляция - важнейший показатель функционального состояния системы внешнего дыхания. Она характеризует объем воздуха, выдыхаемого из легких? течение одной минуты.

МОД = ДО х ЧД,

где ДО - дыхательный объем,

ЧД - частота дыхания.

Легочная вентиляция? покое у спортсмено? ? среднем составляет 5-12 л/мин, но может превышать данные величины и составлять 18 л/мин и более. Во время нагрузки легочная вентиляция у спортсмено? возрастает и достигает 60-120 л/мин и более.

Проба Тиффно-Вотчала

Форсированная ЖЕЛ - это очень быстрый выдох максимального объема воздуха после максимального вдоха. В норме она на 300 мл меньше фактической ЖЕЛ.

Проба Тиффно-Вотчала - это форсированная ЖЕЛ за первую секунду выдоха. В норме у спортсмено? она составляет 85% форсированной ЖЕЛ. Снижение данного показателя наблюдается при нарушениях бронхиальной проходимости.

Функциональное состояние дыхательной системы имеет немаловажное значение для женщин, особенно в период беременности и при выполнении детородной функции. Устойчивость к гипоксии является одним из критериев состояния репродуктивного здоровья, так как при вынашивании ребенка необходимость насыщения крови кислородом усиливается.

Для определения устойчивости организма к гипоксии используются пробы Штанге и Генчи. Проба Штанге – регистрация времени задержки дыхания при глубоком вдохе (но не максимальном, одновременно зажимая нос пальцами). Время задержки дыхания отмечают по секундомеру. Средние значения пробы Штанге для женщин 50–60 секунд. Проба Генчи – регистрация времени задержки дыхания после максимального выдоха (исследуемый зажимает нос пальцами). Продолжительность задержки отмечают по секундомеру. В норме данный показатель у женщин составляет 25–40 секунд.

Для определения функции внешнего дыхания и его основного показателя – жизненной емкости легких (ЖЕЛ) используется спирометр. Для измерения ЖЕЛ нужно сделать максимально глубокий вдох, а затем плавно равномерно выдохнуть в спирометр. Продолжительность выдоха должна составлять 5–7 секунд. Измерения проводятся трижды, с интервалом в 30 секунд, фиксируется лучший результат. Средние показатели у женщин – 3200 мл. Поделив эту цифру на величину веса тела, получим показатель развития дыхательной системы. 50 миллилитров на килограмм массы тела свидетельствует о хорошем развитии органов дыхания. Меньшая цифра говорит о недостаточности ЖЕЛ либо об избыточной массе тела.

Важной функциональной величиной является экскурсия грудной клетки (разница между величинами окружностей при вдохе и выдохе). У тренированных людей разница достигает более 10 см, хорошим является показатель 9 см, от 5 до 7 – удовлетворительный. Данный показатель имеет особое значение, так как у женщин во второй половине беременности диафрагма поднимается высоко, экскурсия грудной клетки становится меньше, вследствие чего устанавливается преимущественно грудной тип дыхания с малой легочной вентиляцией.

Приложение 2

ТЕСТЫ

Тест – это оценка физического состояния или физической подготовленности (способности) занимающегося. Тесты проводятся на методико-практических и учебно-тренировочных занятиях и оцениваются по пятибалльной системе.

Брюшной пресс (статика)

Поддержание какой-либо позы требует от мышц напряжения без сокращения. Длительное напряжение, при котором может поддерживаться поза, характеризует тонус мышц. Мышечный тонус, являющийся двигательным безусловным рефлексом, под­держивается непроизвольно.

Высота площадки – 5 см, ширина 45–50 см, длина 110–120 см (степ).

Методика исполнения: сидя на краю площадки с торцовой стороны, ноги согнуть под углом 90 градусов (по отношению бедра и голени).

Исходное положение: лежа на спине, руки в «замок» на затылке (рис. 8), разведя локти в стороны, подняв верхнюю часть спины, удерживать позу.

Статическая сила брюшного пресса

Квадрицепсы (статика)

Исходное положение: упор спиной на стенку, согнуть ноги под углом 90 градусов между бедром и голенью, руки опущены вдоль туловища. Удержать позу.

Разгибатели спины (статика)

Вариант 1 . И.п.: лежа на животе, руки прямые, прижаты к туловищу. Поднять голову и грудную клетку, зафиксировать позу, держать (рис.10).

Вариант 2 . Для определения статической выносливости мышц спины обследуемый ложится на высокий стол вниз лицом так, чтобы верхняя часть туловища до подвздошных гребней находилась на весу, руки согнуты к плечам, ноги удерживает обследующий, фиксируется удержание туловища на уровне стола (наклон туловища вперед). Время утомления мышц определяется по секундомеру. В норме продолжительность удержания туловища в горизонтальном положении равна от двух до четырех минут.

Время удержания позы

Динамическая спирометрия – определение изменений ЖЕЛ под влиянием физической нагрузки (проба Шафранского). Определив исходную величину ЖЕЛ в покое, обследуемому предлагают выполнить дозированную физическую нагрузку - 2-минутный бег на месте в темпе 180 шаг/мин при подъеме бедра под углом 70-80°, после чего снова определяют ЖЕЛ. В зависимости от функционального состояния системы внешнего дыхания и кровообращения и их адаптации к нагрузке ЖЕЛ может уменьшиться (неудовлетворительная оценка), остаться неизменной (удовлетворительная оценка) или увеличиться (оценка, т.е. адаптация к нагрузке, хорошая). О достоверных изменениях ЖЕЛ можно говорить только в том случае, если она превысит 200 мл.

Проба Розенталя - пятикратное измерение ЖЕЛ, проводимое через 15-секундные интервалы времени. Результаты данной пробы позволяют оценить наличие и степень утомления дыхательной мускулатуры, что, в свою очередь, может свидетельствовать о наличии утомления других скелетных мышц.


Результаты пробы Розенталя оценивают следующим образом:

Увеличение ЖЕЛ от 1-го к 5-му измерению - отличная оценка;

Величина ЖЕЛ не изменяется - хорошая оценка;

Величина ЖЕЛ снижается на величину до 300 мл - удовлетворительная оценка;

Величина ЖЕЛ снижается более чем на 300 мл - неудовлетворительная оценка.


Проба Шафранского заключается в определении ЖЕЛ до и после стандартной физической нагрузки. В качестве последней используются подъемы на ступеньку (22,5 см высоты) в течение 6 мин в темпе 16 шаг/мин. В норме ЖЕЛ практически не изменяется. При снижении функциональных возможностей системы внешнего дыхания значения ЖЕЛ уменьшаются более чем на 300 мл.
Гипоксические пробы дают возможность оценить адаптацию человека к гипоксии и гипоксемии.
Проба Генчи - регистрация времени задержки дыхания после максимального выдоха. Исследуемому предлагают сделать глубокий вдох, затем максимальный выдох. Исследуемый задерживает дыхание при зажатом носе и рте. Регистрируется время задержки дыхания между вдохом и выдохом. норме величина пробы Генчи у здоровых мужчин и женщин составляет 20-40 с и для спортсменов – 40-60 с.
Проба Штанге - регистрируется время задержки дыхания при глубоком вдохе. Исследуемому предлагают сделать вдох, выдох, а затем вдох на уровне 85-95% от максимального. Закрывают рот, зажимают нос. После выдоха регистрируют время задержки.Средние величины пробы Штанге для женщин – 35-45 с для мужчин – 50-60 с, для спортсменок – 45-55 с и более, для спортсменов - 65-75 с и более.
Проба Штанге с гипервентиляцией
После гипервентиляции (для женщин - 30 с, для мужчин - 45 с) производится задержка дыхания на глубоком вдохе. Время произвольной задержки дыхания в норме возрастает в 1,5-2,0 раза (в среднем значения для мужчин – 130-150 с, для женщин – 90-110 с).
Проба Штанге с физической нагрузкой. После выполнения пробы Штанге в покое выполняется нагрузка - 20 приседаний за 30 с. После окончания физической нагрузки тотчас же проводится повторная проба Штанге. Время повторной пробы сокращается в 1,5-2,0 раза.По величине показателя пробы Генчи можно косвенно судить об уровне обменных процессов, степени адаптации дыхательного центра к гипоксии и гипоксемии и состояния левого желудочка сердца.Лица, имеющие высокие показатели гипоксемических проб, лучше переносят физические нагрузки. В процессе тренировки, особенно в условиях среднегорья, эти показатели увеличиваются.У детей показатели гипоксемических проб ниже, чем у взрослых.
7.2.3. Инструментальные методы исследования системы дыхания
Пневмотахометрия - определение максимально объемной скорости потока воздуха при вдохе и выдохе. Показатели пневмотахометрии (ПТМ) отражают состояние бронхиальной проходимости и силу дыхательной мускулатуры. Бронхиальная проходимость - важный показатель состояния функции внешнего дыхания. Чем шире суммарный просвет воздухоносных путей, тем меньше сопротивление, оказываемое ими потоку воздуха и тем больше его объем способен вдохнуть и выдохнуть человек при максимально форсированном дыхательном акте. От величины бронхиальной проходимости зависят энергетические траты на вентиляцию легких. При увеличении бронхиальной проходимости один и тот же объем вентиляции легких требует меньше усилий. Систематические занятия физической культурой и спортом способствуют совершенствованию регуляции бронхиальной проходимости и ее увеличению.
Объемная скорость потока воздуха на вдохе и выдохе измеряется в литрах в секунду (л/с).
У здоровых нетренированных людей соотношение объемной скорости вдоха к объемной скорости выдоха (мощность вдоха и выдоха) близко единице. У больных людей это соотношение всегда меньше единицы. У спортсменов мощность вдоха превышает мощность выдоха, и это соотношение достигает 1,2-1,4.
Для более точной оценки бронхиальной проходимости легче пользоваться расчетом должных величин. Для расчета должной величины фактическая величина ЖЕЛ умножается на 1,24. Нормальная бронхиальная проходимость равна мощности вдоха и выдоха, т.е. 100 ± 20% его от должной величины.
Показатели ПТМ колеблются у женщин от 3,5 до 4,5 л/с; у мужчин - от 4,5 до 6 л/с. У спортсменок величины ПТМ составляют 4-6 л/с, у спортсменов – 5-8 л/с.
В последние годы функцию внешнего дыхания определяют с помощью компьютера «IBM PC» на аппарате «Спироскоп ТМ» методами спирографии и петля поток - объем форсированного выхода (ППО), как наиболее приемлемых для динамического исследования дыхания. Так, самые высокие показатели ЖЕЛ, объема форсированного выдоха за 1 с (ОФВ 1), МВЛ, выявлены в группе выносливости, несколько ниже, но также высокие - в группе единоборств и игровых видов спорта, что указывает на то, что в этих видах спорта развитию качества выносливости уделяется существенное внимание (Дьякова П.С., 2000).
Спирография - метод комплексного исследования системы внешнего дыхания с регистрацией показателей частоты дыхания (ЧД), глубины дыхания (ГД), минутного объема дыхания (МОД), жизненной емкости легких с ее компонентами: резервный объем вдоха - (РОВД), резервный объем выдоха - (РОВЬШ), дыхательный объем - (ДО), форсированной ЖЕЛ (ФЖЕЛ), максимальной вентиляции легких (МВЛ) и потребление кислорода (ПО2).
ЧД в норме в условиях покоя у взрослых практически здоровых людей колеблется от 14 до 16 дыханий в минуту. У спортсменов с ростом тренированности ЧД может урежаться и составлять от 8 до 12 в минуту, у детей - несколько больше.
ГД, или дыхательный объем (ДО) также измеряется на спирограмме равномерного спокойного дыхания. ДО составляет примерно 10% емкости легких или 15-18% ЖЕЛ и равен у взрослых 500-700 мл, у спортсменов ДО возрастает и может достигать 900-1300 мл.
МОД (легочная вентиляция) представляет собой произведение ДО на ЧД в 1 мин (при равномерном дыхании равной глубины). В покое в условиях нормы эта величина колеблется от 5 до 9 л/мин. У спортсменов его величина может достигать 9-12 л/мин и более. Важно, чтобы МОД при этом возрастал за счет глубины, а не частоты дыхания, что не приводит к избыточному расходу энергии на работу дыхательной мускулатуры. Иногда увеличение МОД в покое может быть связано с недостаточным восстановлением после тренировочных нагрузок.
Резервный объем вдоха (РО ВД) - это объем воздуха, который исследуемый может вдохнуть при максимальном усилии вслед за обычным вдохом. В покое этот объем примерно равен 55-63% ЖЕЛ. Этот объем в первую очередь используется для углубления дыхания при нагрузке и определяет способность легких к дополнительному их расширению и вентиляции.
Резервный объем выдоха (РО ВЫД) - это объем воздуха, который исследуемый может выдохнуть при максимальном усилии вслед за обычным выдохом. Его величина колеблется от 25 до 345 от ЖЕЛ в зависимости от положения тела.
Форсированная ЖЕЛ (ФЖЕЛ или проба Тиффно-Вотчела) - максимальный объем воздуха, который можно выдохнуть за 1 с. При определении этой величины из положения максимального вдоха испытуемый делает максимально форсированный выдох. Рассчитывается этот показатель в мл/с и выражается в процентах к обычной ЖЕЛ. У здоровых лиц, не занимающихся спортом, этот показатель колеблется от 75 до 85%. У спортсменов этот показатель может достигать больших значений при одновременном увеличении ЖЕЛ и ФЖЕЛ: их процентные соотношения изменяются незначительно. ФЖЕЛ ниже 70% указывает на нарушение бронхиальной проходимости.
Максимальная вентиляция легких (МВЛ) - это наибольший объем воздуха, вентилируемый легкими за 1 мин при максимальном усилении дыхания за счет увеличения его частоты и глубины. МВЛ относится к числу показателей, которые наиболее полно характеризуют функциональную способность системы внешнего дыхания. На величину МВЛ влияют ЖЕЛ, сила и выносливость дыхательной мускулатуры, бронхиальная проходимость. Кроме того, МВЛ зависит от возраста, пола, физического развития, состояния здоровья, спортивной специализации, уровня тренированности и периода подготовки. В норме у женщин МВЛ – 50-77 л/мин, у мужчин – 70-90 л/мин. У спортсменов может достигать 120-140 л/мин - женщины, 190-250 л/мин - мужчины. При определении МВЛ измеряют объем вентиляции при максимально произвольном усилении дыхания в течение 15-20 с, а затем приводят полученные данные к минуте и выражают в л/мин. Более продолжительная гипервентиляция приводит к гипокапнии, что вызывает снижение артериального давления и появление у исследуемых головокружений. Оценку уровня функциональной способности системы внешнего дыхания можно получить при сопоставлении МВЛ с должной МВЛ (ДМВЛ):


ДМВЛ = (ЖЕЛ / 2Ж) х 35

МВЛ, в % ДМВЛ = (факт. МВЛ х 100) / ДМВЛ


Нормальная величина МВЛ составляет 100±10 ДМВЛ. У спортсменов МВЛ достигает 150% ДМВЛ и более.Если из МВЛ вычесть МОД в покое, получим величину, показывающую, насколько спортсмен может увеличить вентиляцию легких, так называемый резерв дыхания. В норме он составляет 91-92% МВЛ.
Дыхательный эквивалент (ДЭ) - это абстрактная величина, выражающая количество литров воздуха, которое необходимо провентилировать, чтобы использовать 100 мл кислорода.ДЭ рассчитывается по формуле:ДЭ = МОДДдолжное потребление кислорода хЮ), где должное потребление кислорода рассчитывается как частное от деления должного основного обмена (ккал) по таблице Гарриса-Бенедикта на коэффициент 7,07.

Принципы оценки. В норме в состоянии покоя дыхательный эквивалент колеблется в пределах от 1,8 до 3,0 и составляет в среднем 2,4.
Вентиляционный эквивалент (ВЭ) , по существу, является тем же показателем, что и ДЭ, но вычисляется не по отношению к должному поглощению кислорода, а по отношению к фактическому.
ВЭ рассчитывается по формуле:ВЭ = МОД/на величину потребления кислорода в литрах.Принципы оценки: чем выше величина ВЭ, тем ниже эффективность дыхания.
Коэффициент резервных возможностей дыхания (КРД) отражает резервные возможности системы внешнего дыхания.КРД = (МВЛ - МОД) х 10 / МВЛ.Принципы оценки : КРД (RHL) ниже 70% указывает на значительную степень снижения функциональных возможностей дыхания.

8. ДИФФУЗИОННАЯ СПОСОБНОСТЬ ЛЕГКИХ (ДЛ) - количество газа, проходящее через альвеол яр но-капилл яр ную мембрану за минуту i расчета на 1 мм рт. ст. разницы парциального давления газа по обе стороны мембраны. Существующие методы определения диффузионной способности легких сложны и трудоемки, Они используются лишь в некоторых специализированных клиниках. Поэтому здесь излагаются только принципы этих методов.
Методы определения. Для определения диффузионной способности легких используются газы, лучше растворимые в крови, чем в альвео-лярно-капиллярныХ мембранах. К таким газам относятся кислород, окись углерода. Поскольку используются небольшие концентрации окиси углерода (0,1-0,2%) и вдыхание газа кратковременно, то применение этого газа для определения диффузионной способности легких безопасно.
Определение диффузионной способности легких с помощью окиси углерода методом одиночного вдоха. Вдыхается газовая смесь: 0,3% СО, 10% гелия, 21% О; в азоте. После 10-секундной задержки дыхания исследуемому предлагается сделать форсированный выдох. Предварительно были определены жизненная емкость и остаточный объем. ДЛ вычисляется по формуле: где ОЕЛ - общая емкость легких; F- исходная альвеолярная концентрация окиси углерода, F -концентрация СО в выдыхаемом газе; --время задержки дыхания в секундах.

Исходная альвеолярная концентрация окиси углерода вычисляется по концентрации гелия в пробе выдыхаемого газа (Fa ,), поскольку гелий нерастворим, его разведение в альвеолярном воздухе равно разведению окиси углерода до начала се поглощения кровью. Это вычисление проводится но формуле:

Газометром определяется концентрация окиси углерода в выдыхаемом воздухе после 10-секундной задержки дыхания.

Определение диффузионной способности легких с п ом ощ ь ю окиси углерода в условиях устойчивого состояния. В течение 15 минут пациент дышит атмосферным воздухом, затем 6 минут вдыхает смесь воздуха с 0,1% окиси углерода (или делает 6 вдохов этой смеси). На 2-й и 6-й минуте измеряется концентрация окиси углерода в выдыхаемом воздухе. Альвеолярное напряжение окиси углерода определяют по пробе альвеолярного газа либо вычисляют, определив предварительно мертвое пространство. Разница количества СО во вдыхаемом и выдыхаемом газе определит количество поглощенной за период исследования окиси углерода. Диффузионная способность для окиси углерода вычисляется по формуле:

где Vco - количество поглощенной окиси углерода в минуту; РАсо~~ напряжение СО в альвеолярном воздухе.

Для получения величины диффузионной способности легких для кислорода полученную величину ДЛС0 умножают на 1,23.

Определение диффузионной способности по кислороду из-за значительной сложности методики распространения не получило. Поэтому описание метода здесь не приводится.

Нормальные величины. Величина диффузионной способности легких зависит от метода исследования, поверхности тела. У женщин она ниже, чем у мужчин. Нижняя граница ДЛ0 в покое составляет примерно 15 мл Ogминмм рт. ст.

Максимальная диффузионная способность легких наблюдается при физической нагрузке. В это время она достигает 60 мл 0.,минмм рт. ст. и более.

Отмечено снижение максимальной диффузионной способности легких с возрастом. Зависимость максимальной диффузионной способности от возраста выражается формулой:

ДЛ0(Макс = 0,67 X рост (в см) -0,55Xвозраст (в годах) -40,9.

Варианты патологии. Нарушения диффузионной способности легких наблюдаются при пневмосклерозс, саркоидозе, силикозе, эмфиземе легких, при митральном стенозе с выраженными застойными явлениями в легких.

При максимальной физической нагрузке фактическая вентиляция легких составляет всего 50% от максимального дыхательного объема. Кроме того, насыщение гемоглобина артериальной крови кислородом происходит даже во время самой тяжелой физической нагрузки. Поэтому дыхательная система не может быть фактором, ограничивающим способность здорового человека переносить физическую нагрузку. Однако для людей в плохой физической форме натренированность дыхательных мышц может стать проблемой. Фактором, ограничивающим способность переносить физическую нагрузку, является способность сердца накачивать кровь к мышцам, которая, в свою очередь, влияет на максимальную скорость переноса 02 Функциональное состояние сердечно-сосудистой системы является распространенной проблемой. Митохондрии в сокращающейся мышце - это конечные потребители кислорода и важнейший определяющий фактор выносливости.
Давление в ротовой полости. Измерение максимального инспираторного и экспираторного давления в ротовой полости - это самое распространенное исследование общей силы инспираторных и экспираторных мышц. Необходимые маневры трудно выполнять некоторым пациентам, поскольку они основываются на максимальной произвольной попытке. Имеются нормальные пределы, но они значительно различаются даже у здоровых субъектов. Минимальная величина нормального предела является следствием легкой слабости или субмаксимальной попытки у здорового субъекта. При нормальном давлении однозначно исключается слабость дыхательных мышц. Давление в полости носа. Инспираторное давление в носовой полости при быстром вдохе носом (шмыганье) основывается на маневре, более простом в исполнении, чем при максимальном инспираторном давлении, и представляет собой точное, простое и неинвазивное определение общей силы инспираторных мышц. Оно в особенности полезно, когда необходимо решить, имеются ли признаки низкого максимального инспираторного давления или же недооценивается сила инспираторных мышц при ХОБЛ, когда передача давления изнутри грудной клетки замедляется. Необходимое для этого исследования оборудование становится все более доступным. Давление во время кашля. Давление или максимальный поток во время кашля помогают определить силу экспираторных мышц. Специальные или инвазивные исследования силы дыхатыльеных мышц Неинвазивные исследования основываются на быстрой передаче давления из грудной клетки в ротовую полость, а также на хорошем понимании, взаимодействии и мотивации пациента определить общую силу инспираторных и экспираторных мышц. При введении катетеров для определения давления в пищевод и желудок можно произвести специальные измерения инспираторного, экспираторного и трансдиафрагмального давления во время быстрого вдоха носом и покашливания. Сочетая инвазивное измерение давления с электрической или магнитной стимуляцией диафрагмального нерва, осуществляют непроизвольное измерение силы диафрагмы. Эти исследования выявляют одностороннюю слабость диафрагмы или поражение диафрагмального нерва, но редко применяются вне специализированных лабораторий. Определение активности дыхательных мышц играет важную роль в понимании того, как легкие вентилируются. Ступенчатый подход к исследованию дыхательных мышц дает представление о прогрессировании различных патологических состояний и о необъяснимых дыхательных симптомах.

9. Влияние физической нагрузки на сердечно-сосудистую систему
Исследования физиологического спортивного сердца (аппарата кровообращения) путей его развития и методов оценки является важной задачей спортивной кардиологии. Правильное и рациональное использование физических упражнений вызывает существенные положительные сдвиги в морфологии и функции сердечно-сосудистой системы. Высокое функциональное состояние физиологического спортивного сердца - это результат долговременной адаптации к регулярным тренировкам. Чтобы понять природу адаптационных изменений, происходящих в физиологическом спортивном сердце, необходимо рассмотреть современные представления об основных закономерностях адаптации организма к физическим нагрузкам. Адаптация индивида - это процесс, позволяющий организму приобретать отсутствующую ранее устойчивость к определенному фактору внешней среды и таким образом получить возможность жить в условиях, считавшихся ранее неразрешимыми (Меерсон Ф.З., 1986). Стадийность процесса адаптации аппарата кровообращения к длительному непрерывному увеличению функции доказана в монографиях Ф.З. Меерсона и его сотрудников (1965-1993). Автор выделил 4 стадии адаптации сердца при его компенсаторной гиперфункции: стадии аварийной, переходной и устойчивой адаптации, четвертая стадия - изнашивания - сопровождается функциональной недостаточностью сердца. При мобилизации функции аппарата кровообращения, вызванной воздействием факторов внешней среды, и в частности воздействием физических нагрузок, столь четкой стадийности процесса адаптации выявить не удается. О стадиях адаптации аппарата кровообращения к физическим нагрузкам можно говорить весьма условно, различая в многолетнем длительном процессе становления спортивного мастерства начальный (точнее, предыдущий) этап срочной адаптации и последующий этап долговременной адаптации.
Срочный этап адаптации
к физическим нагрузкам возникает непосредственно после начала действия физической нагрузки на организм нетренированного человека и реализуется на основе готовых физиологических механизмов. Срочная адаптации включает в себя все механизмы регуляции аппарата кровообращения, которые призваны в условиях выполнения физической нагрузки поддерживать, гомеостаз. Однако выполнение нагрузки лицом неподготовленным не позволяет ему достичь быстроты двигательной реакции и выполнять нагрузку достаточно долго.Срочная адаптационная реакция, как правило, оказывается недостаточно совершенной, чтобы достичь желаемого результата.
Долговременный этап адаптации
наступает постепенно, благодаря достаточному и дробному воздействию адаптогенного фактора, т.е. путем перехода количества в качество. Именно благодаря дробному воздействию на организм физических нагрузок, используемых в современном тренировочном процессе, спортсмену удается добиться высоких спортивных результатов. С другой стороны, для спортсмена, хорошо адаптированного к определенным физическим нагрузкам, этот, уже достигнутый уровень адаптации является исходным для достижения еще более высокого результата
10. Прежде всего это касается вопроса о так называемых особенностях аппарата кровообращения спортсмена и, во-вторых, о триаде признаков, считавшихся характерными для высокого уровня функционального состояния сердечно-сосудистой системы спортсмена и даже оценивавших состояние его тренированности в целом. Речь идет о брадикардии, гипотензии и гипертрофии миокарда. Некоторые авторы называют эти 3 признака «синдромом спортивного сердца» [Кгеmer R., 1974].
Что касается особенностей физиологического «спортивного сердца», то, например, ЭКГ спортсмена, отражающую положительные физиологические сдвиги в сердце, характеризуют синусовая брадикардия, умеренно выраженная синусовая аритмия (при разнице в интервалах R-R от 0,10 до 0,15 с), вертикальная или полувертикальная электрическая позиция сердца, снижение амплитуды зубца Р, большая амплитуда зубцов R и Т, особенно в грудных отведениях, небольшой подъем сегментов ST выше изоэлектрического уровня. При повышении уровня функционального состояния отмечаются существенные положительные сдвиги, в основе которых лежит включение компенсаторно-приспособительных механизмов под влиянием повышения тонуса блуждающего нерва, что проявляется в его отрицательном инотропном и отрицательном хронотропном влиянии.
Физиологические особенности спортивного аппарата кровообращения, описанные Г. Ф. Лангом, нашли полное подтверждение в работах последних лет. Речь идет, например, о меньшем у спортсменов, чем у не занимающихся спортом, минутном объеме кровообращения, необходимом для обеспечения работающих мышц, что обусловлено лучшим использованием кислорода крови на периферии. Особое значение Г. Ф. Ланг придавал улучшению капиллярного кровообращения в сердечной мышце при занятиях физическими упражнениями. К особенностям физиологического «спортивного сердца» Г. Ф. Ланг справедливо относил также способность к увеличению минутного объема кровообращения при физической нагрузке не столько за счет учащения сердечных сокращений, сколько за счет увеличения ударного объема.
Придавая огромное значение особенностям сердечно-сосудистой системы спортсмена, Г. Ф. Ланг справедливо подчеркивал, что в цепи изменений организма в целом, отдельных его систем и органов это - только звено, правда очень важное.
Из краткого перечисления особенностей физиологического «спортивного сердца» становится очевидной невозможность дать их подробный анализ в этой книге.
Что же касается второго вопроса, а именно о трех основных признаках высокого уровня функционального состояния (брадикардия, гипотензия и гипертрофия миокарда), то в свете современных данных это представление требует пересмотра. Эти 3 признака считали, да и сейчас считают, основными признаками тренированности спортсмена.
Прежде всего представляется неправильным говорить о тренированности спортсмена на основании только медицинских данных, ибо тренированность - понятие педагогическое. Тем более не следует говорить о состоянии тренированности какой-либо отдельно взятой системы или органа (в частности, сердечно-сосудистой системы), что, к сожалению, нередко делается. Но основное заключается в том, что, с одной стороны, состояние высокой тренированности не всегда сопровождается всеми этими признаками, а с другой стороны - в ряде случаев эти признаки могут быть проявлением патологических изменений в организме.
Наиболее постоянным и обязательным признаком высокого функционального состояния сердца спортсмена является брадикардия. Действительно, при этом частота сердечных сокращений уменьшается, и резко выраженная брадикардия (ниже 40 уд/мин), которая всегда вызывает сомнения в отношении ее физиологического происхождения, встречается чаще у мастеров спорта и спортсменов I разряда, причем среди мужчин чаще, чем среди женщин. Однако все же, если частота сердечных сокращений у спортсмена меньше 30-40 уд/мин, он обязательно должен быть подвергнут тщательному врачебному обследованию, прежде всего для исключения полной блокады сердца или каких-либо других его поражений.

11. Изменения регуляции системного кровообращения под влиянием физических нагрузок динамического характера полностью укладываются в известные и обсуждавшиеся выше принципы экономизации функции систем в покое и при малых нагрузках и максимальной производительности при выполнении предельных нагрузок.

Г.Ф. Ланг (1936) отмечал отчетливое снижение артериального давления у спортсменов, которое, однако, не выходило за пределы нижних границ нормы. Позднее эти наблюдения были многократно подтверждены многими исследователями (Дембо А.Г., Левин М.Я., 1969; Граевская Н.Д., 1975; Карпман В.Л., Любина Б.Г., 1982).

Влияние систематических тренировок на уровень артериального давления в покое было подробно изучено А. Г. Дембо и М.Я. Левиным (1969). Они доказали, что снижение артериального давления у спортсменов, тренирующих выносливость, встречается тем чаще, чем выше уровень спортивного мастерства, стаж спортивных тренировок, их объем и интенсивность. Последнее обстоятельство подтверждается ростом ги-потензии от подготовительного к соревновательному периоду.

Таким образом, можно утверждать, что регулярные тренировки динамического характера сопровождаются артериальной гипотензией, в основе развития которой лежат адаптивные изменения артериальной сосудистой системы.

Действительно, трудно себе представить увеличение производительности спортивного сердца без увеличения гидравлической проводимости сосудов большого круга кровообращения (Blomgvist С, Saltin В., 1983).

Другим проявлением экономизации функции аппарата кровообращения у спортсменов являются адаптивные изменения скорости кровотока, которая существенно снижается у спортсменов по мере роста тренированности. Это, в свою очередь, создает благоприятные условия для максимального извлечения кислорода из крови в ткани (Яковлев Н.Н., 1974).

Кроме того, в процессе адаптации к физическим нагрузкам динамического характера увеличивается растяжимость артерий, снижается их упругое сопротивление и в конечном счете увеличивается емкость артериального русла. Таким образом, снижение констрикторного тонуса сосудов облегчает движение крови и способствует снижению энергетических затрат сердца.

Снижение тонуса стенок артерий, возникающее под воздействием регулярных тренировок, прежде всего на выносливость, проявляется уменьшением скорости распространения пульсовой волны (СРПВ). Интенсивность кровотока через конечности у этих спортсменов также снижена. Показано, что при стандартной физической нагрузке приток крови к работающим мышцам спортсменов меньше, чем у нетренированных лиц (Озолинь П.П., 1984).

Все эти данные подтверждают представление об экономизации функции сосудистой системы в состоянии покоя. Механизмы описанных выше изменений сосудистого тонуса при систематических тренировках в настоящее время не вполне ясны. Трудно допустить, что первоосновой снижения тонуса сосудов в состоянии покоя у спортсменов является снижение метаболической активности мышечной ткани. Этому противоречит выявляемое у спортсменов существенное повышение артериовенознои разницы по кислороду по сравнению с нетренированными лицами (Васильева В.Д., 1971; Ekblom В. et al., 1968).

Эти данные скорее указывают, что при систематических тренировках увеличивается способность мышц использовать кислород. По современным представлениям, в совершенствовании регуляции сосудов резистивного типа участвуют три вида механизмов: гуморальный, местный и рефлекторный (Озолинь П.П., 1984).

Хотя гуморальные механизмы повышения сосудистого тонуса, несомненно, принимают участие в реакции артерий на нагрузку, их роль в регуляции сосудистого тонуса не является ведущей. В ряде исследований выявлено, что регулярные тренировки динамического характера существенно снижают уровень катехоламинов крови в ответ на тестирующую нагрузку. Это дает основание полагать, что реакцию сосудов определяет не уровень катехоламинов крови, а высокая чувствительность нервных приборов сосудистой стенки.

Местные сосудистые реакции также активно участвуют в регуляции кровотока, но центральное место в регуляции сосудистого тонуса в состоянии покоя принадлежит нервно-рефлекторным механизмам регуляции.

Результаты исследований В. Saltin и соавт. (1977) свидетельствуют, что мобилизация функции сердечно-сосудистой системы при физических нагрузках осуществляется рефлекторно при помощи сигналов, исходящих из рецепторов работающих мышц. Эти рефлекторные реакции претерпевают существенные изменения под воздействием систематических физических нагрузок. Авторы высказывают вполне обоснованное предположение, что сердечно-сосудистые рефлексы, совершенствующиеся при регулярных тренировках, формируются благодаря возбуждению хеморецепторов скелетных мышц.

В заключение следует подчеркнуть, что ведущую роль в изменении сосудистых реакций под влиянием систематических физических нагрузок играют рефлекторные механизмы, поскольку только они способны обеспечить тонкое взаимодействие различных систем жизнеобеспечения и точную регуляцию регионарного кровотока в различных областях.

При физических нагрузках статического характера, описанных выше, адаптационных изменений сосудистого тонуса не происходит. Напротив, при тренировках, направленных на развитие силы, интенсивность кровотока в состоянии покоя повышается (Озолинь П.П., 1984). У штангистов, как известно, отмечается наклонность к повышению артериального давления (Вольнов Н.И., 1958; Дембо А.Г., Левин М.Я., 1969; Матиашвили К.И., 1971).

Г.Ф. Ланг считал улучшение капиллярного кровотока в мышцах главным фактором, обеспечивающим лучшее использование кислорода. Что касается сердечной мышцы, то увеличение капиллярного кровотока, по мнению Г.Ф. Ланга, является непременным условием успешной адаптации к физическим нагрузкам. Сегодня факт увеличения пропускной способности коронарного русла и его емкости в результате адаптации к физическим нагрузкам полностью подтвержден и не вызывает сомнений (Пшенникова М.Г. 1986).

В путях адаптации аппарата кровообращения к повторяющимся нагрузкам того или иного характера имеются существенные различия. Если иметь в виду выполнение упражнений динамического или статического характера с вовлечением в работу больших групп мышц, то различия гемодинамического ответа обнаруживаются при однократных нагрузках, т.е. на стадии срочных адаптационных реакций.

Величина ударного объема (УО) возрастает линейно лишь до 1/3 от МПК, далее прирост величины УО незначителен. Однако МОК растет линейно до достижения уровня МПК в основном за счет роста ЧСС.

Определение предельно допустимой ЧСС, в зависимости от возраста, можно рассчитать по формуле R.Marshall &J.Shepherd (1968):ЧССмакс = 220 - Т (уд/мин).

Скорость нарастания величины УО существенно выше скорости роста ЧСС. В результате УО приближается к своему максимальному значению при VO 2 , равному примерно 40% от МПК и ЧСС около ПО уд/мин. Рост УО во время выполнения физической нагрузки обеспечивается благодаря взаимодействию ряда вышеописанных регуляторных механизмов. Так, при увеличении нагрузки под влиянием возрастающего венозного возврата, наполнение желудочков сердца увеличивается, что в сочетании с ростом растяжимости миокарда приводит к увеличению конечно-диастолического объема. Это, в свою очередь, означает возможность увеличения УО крови за счет мобилизации базального резервного объема желудочков. Увеличение сократительной способности сердечной мышцы сопряжено также с ростом ЧСС. Другим механизмом мобилизации базального резервного объема является нейрогуморальный механизм, регулирующийся через воздействие на миокард катехоламинов.

Реализация перечисленных механизмов срочной адаптации происходит через систему внутриклеточной регуляции процессов, протекающих в миокарди-оцитах, к которым относятся их возбуждение, сопряжение возбуждения и сокращения, расслабление миокардиальных клеток, а также их энергетическое и структурное обеспечение. Само собой разумеется, что в процессе срочных адаптационных реакций на физические нагрузки происходит интенсификация всех перечисленных выше процессов жизнедеятельности миокардиальных клеток, во многом определяется характером нагрузки.

Учитывая особенности гемодинамического ответа на динамическую нагрузку, полагают, что среди кардиальных механизмов увеличение УО ведущую роль играет увеличение скорости расслабления миокарда и связанное с ней совершенствование транспорта Са 2+ . При выполнении физических нагрузок динамического характера в ответ на изменение сердечного выброса и сосудистого тонуса отмечается подъем артериального давления. Прямое измерение артериального давления с помощью катетеров, введенных в плечевую и бедренную артерии молодых здоровых людей, занимающихся различными видами спорта, показало, что при нагрузках в 150-200 Вт систолическое давление повышалось до 170-200 мм.рт.ст., в то время как диастолическое и среднее давление изменялись весьма незначительно (5-10 мм.рт.ст.). При этом закономерно падает периферическое сопротивление, снижение его является одним из самых важных экстракардиальных механизмов срочной адаптации к динамическим нагрузкам.

Другим таким механизмом является увеличение использования кислорода из единицы объема крови. Доказательством включения этого механизма является изменение артериовенозной разницы по кислороду при нагрузке. Так, по расчетам В.В. Васильевой и Н.А. Степочкиной (1986), в состоянии покоя венозная кровь уносит за 1 мин примерно 720 мл неиспользованного кислорода, в то время как на высоте максимальной физической нагрузки в оттекающей от мышц венозной крови кислорода практически не содержится (Bevegard В., Shephard J., 1967).

При динамических нагрузках наряду с повышением сердечного выброса увеличивается сосудистый тонус. Последний характеризуется скоростью распространения пульсовой волны, которая, по данным многих исследователей, при физических нагрузках существенно повышается в сосудах эластического и мышечного типа (Смирнов К.М., 1969; Васильева В.В., 1971; Озолинь П.П., 1984).

Наряду с этими общими сосудистыми реакциями в ответ на такую нагрузку может существенно изменяться региональный кровоток, как показала В.В. Васильева (1971), происходит перераспределение крови между работающими и неработающими органами.

Небольшое увеличение МОК, наблюдающееся при статических нагрузках, достигается не увеличением УО, а ростом ЧСС. В отличие от реакции аппарата кровообращения на динамическую нагрузку, при которой отмечается увеличение АДс при сохранении исходного уровня, при статической АДс повышается незначительно, а АДд существенно. При этом периферическое сопротивление сосудов не снижается, как это имеет место при динамических нагрузках, а остается практически неизмененным. Таким образом, наиболее существенным отличием в реакции аппарата кровообращения на статические нагрузки является выраженный подъем АДд, т.е. увеличение постнагрузки. Это, как известно, существенно повышает напряжение миокарда и, в свою очередь, определяет включение тех механизмов долговременной адаптации, которые обеспечивают адекватное кровоснабжение тканей в этих условиях.

12. Сопоставление работоспособности (выполненной в тесте нагрузки) и приспособляемости (реакции), т.е. цены данной работы, достаточно полно характеризует функциональную подготовленность и состояние обследуемого. Даже высокая работоспособность при чрезмерном напряжении гемодинамики, выраженном метаболическом ацидозе, невысоком МПК и кислородном пульсе менее 20 мл на удар либо высоких показателях МПК при небольшом кислородном пульсе, инверсии зубцов Т либо появлении высоких (более 6-8 мм) остроконечных зубцов, снижении сегмента более чем на 1,5 мм (особенно восходящей или корытообразной формы), снижении или резком возрастании вольтажа зубцов R, появлении различных видов нарушения ритма, особенно политопных и групповых экстрасистол, дискоординации функций свидетельствует о функциональном неблагополучии.

Неблагоприятными признаками надо также считать снижение содержания гемоглобина и эритроцитов при уменьшении средней гемоглобинизации эритроцитов, гиперлейкоцитоз с выраженным сдвигом лейкоцитарной формулы влево, падение концентрации лимфоцитов и эозинофилов, а также идентичные изменения при нарастающей лейкопении, продолжительное после нагрузки изолированное повышение гематокрита или снижение количества гемоглобина на фоне повышения числа ретикулоцитов, выраженное снижение содержания белка в крови (Макарова Г.А., 1990), резкие изменения минерального обмена, в частности падение содержания ионов калия, натрия, фосфатидов (Виру А.А. и др., 1963; Лайцберг Л.А., Калугина Г.Е., 1969; Воробьев А.В., Воробьева Э.И., 1980; Финогенов B.C., 1987, и др.), некомпенсированный метаболический ацидоз (рН в пределах 7-7,1), появление в моче белка (более 0,066 г/л) и форменных элементов, выраженное снижение ее плотности, ухудшение функции ЦНС и нервно-мышечного аппарата. Особенно неблагоприятны чрезмерное напряжение (в том числе дискоординация) функций и замедленное восстановление их при невысоких показателях работоспособности. Высокая работоспособность даже при значительной (но адекватной) реакции гемодинамики, обмена и симпатоадреналового звена регуляции при нормальном течении процессов восстановления указывает на высокие функциональные возможности и способность организма к их мобилизации при предъявлении максимальных требований. Например, у высокотренированного бегуна на длинные дистанции при предельной мощности работы 2650 кгм/мин (310 кгм/кг) и МПК 78 л/кг ЧСС достигала 210 уд/мин, систолическое артериальное давление - 220 мм.рт.ст. при нулевом диастолическом, систолический объем увеличивался до 180 м, минутный - до 36 л/мин, наблюдались выраженные сдвиги на ПКГ и ЭКГ, но без нарушения ритма и деформации конечной части кривой, кислородный долг составлял 15 л, но уже к 2-й минуте после нагрузки в основном погашался, значительная часть лактата утилизировалась, гемодинамические сдвиги восстановились в пределах 25 мин. Существенной можно считать экономизацию кислородного пульса на субкритичном уровне.Эффективность и устойчивость системы внешнего дыхания при максимальных нагрузках проявляются высокой аэробной мощностью: МПК 5-6 л/мин (70-80 мл/кг), минутный объем дыхания - 70-80 л, кислородный пульс - 25-30 мл на удар, высокий и устойчивый коэффициент использования кислорода и выделения СО2.

13. Функциональная проба - это нагрузка, задаваемая обследуемому для определения функционального состояния и возможностей какого-либо органа, системы или организма в целом. Используется преимущественно при спортивно-медицинских исследованиях. Нередко термин «функциональная проба с физической нагрузкой» заменяется термином «тестирование». Однако, хотя «проба» и «тест» - это, по существу, синонимы (от англ. teste - проба), все же «тест» - термин в большей степени педагогический и психологический, ибо подразумевает определение работоспособности, уровня развития физических качеств, особенностей личности. Физическая работоспособность тесно связана с путями ее обеспечения, т.е. с реакцией организма на данную работу, но для педагога в процессе тестирования ее определение не обязательно. Для врача же реакция организма на данную работу - показатель функционального состояния. Даже высокие показатели работоспособности при чрезмерном напряжении (а тем более срыве) адаптации не позволяют высоко оценить функциональное состояние обследуемого.

структуре движения мощности работы обследуемого - специфические неспецифические используемой аппаратуре («простые и сложные»), по («рабочие») («послерабочие») и т.п.

14. Для того чтобы функциональные пробы с физическими нагрузками обеспечивали достаточную информативность при динамических исследованиях, они должны соответствовать следующим требованиям:

Заданная нагрузка должна быть знакома обследуемому и не требовать дополнительного освоения навыка;

Вызывать общее, а не локальное утомление;

Исключать возможность риска, болезненных ощущений, негативного отношения.

Должна быть обеспечена одинаковая модель нагрузок, одинаковые внешние условия, режим дня, время суток, время приема пищи, исключение применения больших нагрузок в день и накануне обследования, исключение каких-либо заболеваний и жалоб, общего переутомления, приема каких-либо лекарственных и восстановительных средств.

При трактовке полученных данных следует учитывать:

Сопоставление работоспособности и адаптации;

Соответствие реакции выполненной работы;

Индивидуальную оценку полученных данных.

Диагностика тренированности (функциональный ее компонент) в годовом и многолетнем циклах подготовки обусловлена календарем соревнований, здоровьем и уровнем спортивного мастерства. При правильной системе подготовки уровень тренированности постепенно повышается, достигая наивысшего к периоду основных соревнований, затем постепенно снижается. Может быть (в зависимости от значимости соревнований и сроков их проведения) несколько периодов спортивной формы в течение сезона.

15. Классификация функциональных проб
В практике спортивной медицины используются различные функциональные пробы - с переменой положения тела в пространстве, задержкой дыхания на вдохе и выдохе, натуживанием, изменением барометрических условий, пищевыми и фармакологическими нагрузками и др. Но в данном разделе мы коснемся лишь основных проб с физическими нагрузками, обязательных при обследовании занимающихся физическими упражнениями. Эти пробы часто называют пробами сердечно-сосудистой системы, поскольку главным образом используются методы исследования кровообращения и дыхания (частота сердечных сокращений, артериальное давление и пр.), но это не совсем правильно, эти пробы следует рассматривать шире, поскольку они отражают функциональное состояние всего организма.

Классифицировать их можно по разным признакам: по структуре движения (приседания, бег, педалирование и пр.), по мощности работы (умеренная, субмаксимальная, максимальная), по кратности, темпу, сочетанию нагрузок (одно- и двухмоментные, комбинированные, с равномерной и переменной нагрузкой, нагрузкой нарастающей мощности), по соответствию нагрузки направленности двигательной деятельности обследуемого - специфические (например, бег для бегуна, педалирование для велосипедиста, бой с тенью для боксера и т. п.) и неспецифические (с одинаковой нагрузкой при всех видах двигательной деятельности), по используемой аппаратуре («простые и сложные»), по возможности определять функциональные сдвиги во время нагрузки («рабочие») или только в восстановительном периоде («послерабочие») и т.п.

Идеальная проба характеризуется: 1) соответствием заданной работы привычному характеру двигательной деятельности обследуемого и тем, что не требуется освоения специальных навыков; 2) достаточной нагрузкой, вызывающей преимущественно общее, а не локальное утомление, возможностью количественного учета выполненной работы, регистрации «рабочих» и «послерабочих» сдвигов; 3) возможностью применения в динамике без большой затраты времени и большого количества персонала; 4) отсутствием негативного отношения и отрицательных эмоций обследуемого; 5) отсутствием риска и болезненных ощущений.

Для сравнения результатов исследования в динамике важны: 1) стабильность и воспроизводимость (близкие показатели при повторных измерениях, если функциональное состояние обследуемого и условия обследования остаются без существенных изменений); 2) объективность (одинаковые или близкие показатели, полученные разными исследователями); 3) информативность (корреляция с истинной работоспособностью и оценкой функционального состояния в естественных условиях).

Преимущество имеют пробы с достаточной нагрузкой и количественной характеристикой выполненной работы, возможностью фиксации «рабочих» и «послерабочих» сдвигов, позволяющие охарактеризовать аэробную (отражающую транспорт кислорода) и анаэробную (способность работать в бескислородном режиме, т.е. устойчивость к гипоксии) производительность.

Противопоказанием к тестированию является любое острое, подострое заболевание либо обострение хронического, повышение температуры тела, тяжелое общее состояние.

С целью увеличения точности исследования, уменьшения доли субъективизма в оценках, возможности использования проб при массовых обследованиях важно применять современную вычислительную технику с автоматическим анализом результатов.

Для того чтобы результаты были сравнимы при динамическом наблюдении (для слежения за изменениями функционального состояния в процессе тренировки или реабилитации), необходимы одинаковые характер и модель нагрузки, одинаковые (или весьма близкие) условия внешней среды, времени суток, режима дня (сон, питание, физические нагрузки, степень общего утомления и т.п.), предварительный (до исследования) отдых не менее 30 мин, исключение дополнительных воздействий на обследуемого (интеркуррентные заболевания, прием медикаментов, нарушения режима, перевозбуждение и др.). Перечисленные условия полностью относятся и к обследованию в условиях относительного мышечного покоя.

16.Оценить реакцию испытуемого на нагрузку можно по показателям, отражающим состояние различных физиологических систем. Обязательным является определение вегетативных показателей, поскольку изменение функционального состояния организма больше отражается на менее устойчивом звене моторного акта - вегетативном его обеспечении. Как показали наши специальные исследования, вегетативные показатели при физических нагрузках менее дифференцированы в зависимости от направленности двигательной деятельности и уровня мастерства и больше обусловлены функциональным состоянием к моменту обследования. В первую очередь это относится к сердечнососудистой системе, деятельность которой теснейшим образом связана со всеми функциональными звеньями организма, во многом определяя его жизнедеятельность и механизмы адаптации, и поэтому в значительной степени отражает функциональное состояние организма в целом. Видимо, в связи с этим методы исследования кровообращения в клинике и спортивной медицине разработаны наиболее подробно и широко используются при любом обследовании занимающихся. При пробах с субмаксимальными и максимальными нагрузками на основании данных о газообмене и биохимических показателях оцениваются также обмен, аэробная и анаэробная работоспособность.

При выборе метода исследования определенное значение имеет направленность двигательной деятельности занимающегося и его преимущественное влияние на то или иное функциональное звено организма. Например, при тренировке, характеризующейся преимущественным проявлением выносливости, кроме исследования сердечно-сосудистой системы, обязательно определение показателей, отражающих функцию дыхания, кислородный обмен и состояние внутренней среды организма, при сложнотехнических и координационных видах спорта - состояние центральной нервной системы и анализаторов, при скоростно-силовых видах, а также в процессе реабилитации после травм и заболеваний опорно-двигательного аппарата, после заболеваний сердца - показателей кровоснабжения и сократительной способности миокарда и т.д.

Определение до и после нагрузки частоты и ритма сердечных сокращений, артериального давления, снятие ЭКГ обязательны во всех случаях . Получившую в последнее время широкое распространение (особенно при физиологических и спортивно-педагогических исслдованиях) оценку реакции на нагрузку только по пульсовой ее стоимости (например, в классическом варианте степ-теста и пробы PWC-170) нельзя признать достаточной, поскольку одна и та же ЧСС может отражать разное функциональное состояние обследуемого, например хорошее при сопряженных и неблагоприятное при разнонаправленных изменениях ЧСС и артериального давления. Одновременно с подсчетом пульса измерение артериального давления позволяет судить о взаимосвязи разных компонентов реакции, т.е. о регуляции кровообращения, а электрокардиография - о состоянии миокарда, в наибольшей степени страдающего при чрезмерной нагрузке.

Улучшение функционального состояния проявляется экономизацией реакции при стандартных нагрузках умереной интенсивности: кислородный запрос удовлетворяется при меньшем напряжении обеспечивающих систем, главным образом кровообращения и дыхания. При предельных, выполняемых до отказа нагрузках более тренированный организм способен к большей мобилизации функций, что и обусловливает способность выполнить эту нагрузку, т.е. более высокую работоспособность. При этом сдвиги в дыхании, кровообращении, внутренней среде организма могут быть весьма значительными. Однако способность к максимальной мобилизации функций тренированного организма, установленная еще B.C. Фарфелем в 1949 г., благодаря совершенной регуляции используется рационально - лишь тогда, когда предъявленные требования действительно являются максимальными. Во всех остальных случаях действует основной защитный механизм саморегуляции - тенденция к меньшему отклонению от физиологического равновесия при более целесообразной взаимосвязи сдвигов. С улучшением функционального состояния развивается способность к правильному функционированию в широком диапазоне временного изменения гомеостаза: между экономизацией и максимальной мобилизационной готовностью существует диалектическое единство.

Таким образом, при оценке реакции на физическую нагрузку решающим фактором должна быть не величина сдвигов (конечно, при условии, что они находятся в пределах допустимых физиологических колебаний), а их соотношение и соответствие выполненной работе . Совершенствование условно-рефлекторных связей, установление согласованной работы органов и систем, усиление взаимосвязей между разными звеньями функциональной системы (главным образом двигательных и вегетативных функций) при физических нагрузках - важный критерий оценки реакций.

Функциональный резерв организма тем выше, чем меньше при нагрузке степень напряжения регуляторных механизмов, чем выше экономичность и стабильность функционирования эффекторных органов и физиологических систем организма при определенных (заданных) действиях и чем выше уровень функционирования при экстремальных воздействиях.

П.Е. Гуминер и Р.Е. Мотылянекая (1979) различают три варианта регулирования: 1) относительную стабильность функций в большом диапазоне мощности, что отражает хорошее функциональное состояние, высокий уровень функциональных возможностей организма; 2) снижение показателей при повышении мощности работы, что указывает на ухудшение качества регулирования; 3) повышение сдвигов при увеличении мощности, что свидетельствует о мобилизации резервов в затрудненных условиях.

Важнейший и почти абсолютный показатель при оценке адаптации к нагрузке и тренированности - быстрота восстановления . Даже очень большие сдвиги при быстром восстановлении не могут оцениваться отрицательно.

Применяемые при врачебном обследовании функциональные пробы можно условно разделить на простые и сложные. К простым относятся пробы, выполнение которых не требует специальных приспособлений и большой затраты времени, поэтому применение их доступно в любых условиях (приседания, прыжки, бег на месте). Сложные пробы выполняются с помощью специальных приспособлений и аппаратов (велоэргометр, третбан, гребной станок и пр.).


2. Диагностика функциональных нарушений системы внешнего дыхания

Внешнее, или лёгочное, дыхание является одним из структурных компонентов системы дыхания, обеспечивающей поступление в организм из внешней среды кислорода, использование его в биологическом окислении органических веществ и удаление избытка образовавшегося углекислого газа из организма во внешнюю среду. Система внешнего дыхания осуществляет газообмен между воздухом и кровью благодаря интеграции функциональных компонентов, включающих: 1. воздухоносные пути и альвеолярные газообменивающие структуры; 2. костно-мышечный каркас грудной клетки, дыхательную мускулатуру и плевру; 3. малый круг кровообращения; 4. нейро-гуморальный аппарат регуляции. Эти структуры обеспечивают нормальную артериализацию крови и адаптацию организма к физической нагрузке и различным патологическим состояниям с помощью трёх процессов: 1. постоянной вентиляции альвеолярных пространств для поддержания нормального газового состава альвеолярного воздуха; 2.диффузии газов через альвеоло-капиллярную мембрану; 3. непрерывного лёгочного кровотока, соответствующего уровню вентиляции. Вентиляция, диффузия и лёгочный кровоток являются последовательными звеньями в цепи переноса газов в системе внешнего дыхания, одновременно представляя собой три неразрывно связанных механизма системы, обеспечивающих её работу и достижение конечного результата.

Нарушения функционального состояния системы внешнего дыхания являются частыми патофизиологическими изменениями не только у пациентов, страдающих заболеваниями лёгких и дыхательных путей, но и при патологии малого круга кровообращения, костно-мышечных структур грудной клетки, центральной нервной системы. Результатом нарушения деятельности внешнего дыхания является развитие дыхательной недостаточности. Существуют различные подходы к определению понятия “дыхательная недостаточность”. Она может трактоваться как состояние, при котором система внешнего дыхания не в состоянии обеспечить нормальный газовый состав артериальной крови, либо как состояние, при котором поддержание адекватного газового состава артериальной крови достигается за счёт напряжения компенсаторных механизмов, приводящего к снижению функциональных возможностей организма.

Причины развития дыхательной недостаточности.

1.Поражение бронхов, вследствие бронхоспазма, отёка слизистой оболочки,

гиперкрини и дискринии, снижения тонуса крупных бронхов,

2. Поражение альвеолярно-респираторных структур лёгких: инфильтрация,

деструкция, фиброзирование лёгочной ткани, ателектаз, пороки развития легких, последствия хирургических вмешательств на них и др.

3. Поражение костно-мышечного каркаса грудной клетки, дыхательной мус-кулатуры и плевры: выраженные деформации грудной клетки и кифосколиоз,

нарушение подвижности рёбер, ограничение подвижности диафрагмы, плевральные сращения, дегенеративно-дистрофические изменения дыхательной мускулатуры и др.

4. Патологические изменения в малом круге кровообращения: застой крови в сосудах, спазм артериол, редукция сосудистого русла.

5. Нарушения регуляции внешнего дыхания вследствие угнетения центральной нервной системы различной этиологии или нарушения местных регуляторных механизмов.

Вышеуказанные патологические процессы часто приводят к развитию сходных клинических симптомов, например, одышки, однако причины этих симптомов могут быть совершенно разными. Проводимые в клинической практике функциональные исследования помогают выяснить эти причины и провести дифференциацию имеющихся нарушений.

Цели и задачи функциональных исследований:

Диагностика и дифференциальная диагностика заболеваний лёгких и бронхов;

Выбор препаратов для проведения патогенетического и симптоматического лечения;

Контроль за эффективностью проводимого лечения;

Мониторирование показателей для оценки течения болезни;

Определение степени и формы дыхательной недостаточности;

Определение функциональных резервов для оценки трудоспособности;

Оценка риска при планировании операции;

Выявление заболеваний органов дыхания среди населения.

Различные методы функционального исследования дают представлениие о состоянии вентиляции, диффузии газов в лёгких, вентиляционно-перфузионных соотношениях и ряде других параметров. При соответствующем оснащении лаборатории функциональной диагностики эти исследования не представляют существенной методической сложности. В клинической практике чаще всего приходится ограничиваться изучением вентиляции, что обусловлено доступностью аппаратуры для проведения этого исследования в большинстве лечебных учреждений.

Наиболее распространёнными методами обследования для изучения вентиляционных параметров являются спирометрия, спирография, пневмотахография, пикфлоуметрия и общая плетизмография. С помощью этих исследований измеряется ряд статических и динамических показателей.

ДО - дыхательный объём – объём воздуха, поступающий в лёгкие при спокойном дыхании за 1 вдох

Ровд - резервный объём вдоха – максимальный объём воздуха, который можно вдохнуть после спокойного вдоха

Ровыд - резервный объём выдоха – максимальный объём воздуха, который можно выдохнуть после спокойного выдоха

ООЛ - остаточный объём лёгких – объём воздуха, который остаётся в лёгких после максимального выдоха

ОЕЛ - общая ёмкость лёгких – максимальное количество воздуха, которое способны вместить лёгкие

ЖЕЛ - жизненная ёмкость лёгких – максимальный объём, который можно выдохнуть после предельно глубокого вдоха

Ёвд - ёмкость вдоха – максимальное количество воздуха, которое можно вдохнуть после спокойного выдоха

ФОЕ - функциональная остаточная ёмкость – объём воздуха, остающийся в лёгких после спокойного выдоха

ЧД - частота дыхания – число дыхательных движений в минуту при спокойном дыхании

МОД - минутный объём дыхания – объём воздуха, поступающий в лёгкие за 1 минуту при спокойном дыхании

МВЛ - максимальная вентиляция лёгких – максимальный объём воздуха, который пациент может провентилировать за 1 минуту

ФЖЕЛ - форсированная жизненная ёмкость лёгких – наибольший объём воздуха, который может быть изгнан после максимального вдоха при форсированном выдохе

ОФВ1 - объём форсированного выдоха за первую секунду – объём форсированного выдоха за первую секунду маневра ФЖЕЛ

ИТ - индекс Тиффно - ОФВ1/ЖЕЛ%

СОС25-75 -средняя объёмная скорость выдоха на уровне 25– 75% ЖЕЛ

МОС25 - максимальные скорости выдоха на уровне выдоха

МОС50 25, 50, 75% ФЖЕЛ

ПОС - пиковая объёмная скорость форсированного выдоха

Числовые значения показателей вентиляции количественно оцениваются при сопоставлении с величинами, которые для лиц данного возраста, роста, веса и пола считаются нормальными. При этом можно воспользоваться должными величинами, либо нормативами. Должная величина показателя – теоретически наиболее вероятное его значение, определённое по установленной у здоровых людей зависимости между данным параметром, полом, возрастом и антропометрическими данными субъекта. Должные величины рассчитываются по формулам, выведенным в результате обследования достаточно представительных групп здоровых лиц.

Лёгочные объёмы и ёмкости относятся к статическим показателям, характеризующим эластические свойства лёгких и грудной стенки.

Рис.1. Лёгочные объёмы и ёмкости.
Большинство из объёмных показателей, за исключением ООЛ и ёмкостей его включающих, получают при спирографическом исследовании. Простота, доступность и информативность метода обеспечили ему широкое распространение. Необременительность для больного и безопасность дают возможность многократных исследований. Спирограмма представляет собой графическую регистрацию объёма лёгких при выполнении различных дыхательных маневров.


Рис. 2. Схематическое изображение спирограммы здорового человека.

Наряду с объёмными показателями при спирографическом тесте исследуются ФЖЕЛ, ОФВ1, ИТ, МОД, МВЛ, являющиеся динамическими характеристиками вентиляции. Исследование проводится в положении сидя, в условиях относительного покоя. Дыхание осуществляется через рот, на нос накладывается зажим. Режимы выполнения маневра ЖЕЛ, ФЖЕЛ и МВЛ различны, но все они предусматривают достижение максимальной амплитуды параметров. Для измерения ЖЕЛ пациент делает максимально глубокий спокойный вдох и выдох; исследование ФЖЕЛ требует от пациента кратковременной задержки дыхания (1-2 сек) на максимальном вдохе с последующим форсированным выдохом; при определении МВЛ обследуемый дышит глубоко и часто (40-50 дыхания в 1 мин) в течение 10 -15 сек. При использовании спирометрического метода исследуется только величина ЖЕЛ. В зависимости от режима проведения спирографии можно получить характеристику процесса вентиляции или состояния аппарата, обеспечивающего процесс вентиляции. К сожалению, по спирограмме технически трудно рассчитать такие высоко информативные скоростные показатели, как ПОС, МОС25,50,75. Для получения этих параметров в настоящее время в клинической практике достаточно широко используется пневмотахографический метод или исследование отношений поток-объём.

По сравнению со спирографией определение кривой поток-объём даёт дополнительные возможности, хотя во многом объём информации, получаемый при помощи обоих методов, одинаков. Процедура выполнения дыхательного маневра при записи кривой поток-объём идентична регистрации ФЖЕЛ во время спирографического исследования. Пневмотахографическое исследование делает возможным точное измерение инспираторного и экспираторного потоков и позволяет проводить измерение объёмной скорости потока как функции объёма лёгких. Наглядность отношения между потоком и объёмом позволяет более глубоко анализировать функциональные характеристики как верхних, так и нижних воздухопроводящих путей.


Рис. 3.Схематическое изображение кривой “поток-объём”.
Скоростные показатели, которые рассчитываются при проведении обследования поток-объём (ПОС, МОС25,50,75, СОС25-75), позволяют более детально судить о локализации обструкции преимущественно в области центральных или в области периферических дыхательных путей. Для регистрации ПОС используется также пикфлоуметрическое исследование.

Спирография и пневмотахография могут быть использованы для определения двух основных патофизиологических типов отклонения от нормы: рестриктивного и обструктивного. Рестриктивный вариант возникает в результате процессов, ограничивающих наполнение грудной клетки воздухом – изменения грудной клетки с деформацией и тугоподвижностью, наличие газа или жидкости в плевральной полости, массивные плевральные сращения, пневмосклеротические и фиброзные изменения лёгочной ткани, ателектаз, опухоли и т.д. Эти процессы препятствуют экскурсиям грудной клетки и расправлению лёгких, но чаще всего не влияют, или почти не влияют, на проходимость дыхательных путей. При обструктивных расстройствах ведущей патофизиологической аномалией является увеличение сопротивления, оказываемого дыхательными путями движению воздуха вследствие спазма гладкой мускулатуры бронхов, отека и воспалительной инфильтрации слизистой бронхов, увеличения количества вязкого секрета, деформации бронхов, экспраторного коллапса бронхов.

При обструктивном типе нарушений вентиляции спирограмма и кривая “поток-объём” выявляют ту или иную степень снижения ОФВ1, МОС25,50,75, СОС25-75, ИТ, ФЖЕЛ. Для обструкции преимущественно центральных дыхательных путей характерно более выраженное уменьшение ПОС и МОС25, при периферической обструкции больше снижаются МОС50 и МОС75. При начальных проявлениях обструкции ОФВ1, ИТ и ФЖЕЛ могут оставаться в пределах нормы, снижаются только МОС25,50,75.


Рис. 4. ЖЕЛ, ФЖЕЛ, структура ОЕЛ и кривые поток-объём при обструкции, сопровождающейся увеличением ОЕЛ

– нарушения умеренные; 2 – значительные; 3 – резкие.


Рис. 5. ЖЕЛ, ФЖЕЛ, структура ОЕЛ и кривые поток-объём при обструктивных нарушениях без увеличения ОЕЛ.

1 – нарушения умеренные; 2 – значительные; 3 – резкие.

Рестриктивный тип нарушений характеризуется снижением ОЕЛ, но, так как при данных исследованиях не представляется возможным определить ООЛ и ОЕЛ, обычно о рестрикции судят по уменьшению ЖЕЛ и её составляющих (РОвд, РО выд, Ёвд). ОФВ1 при рестрикции, если нет выраженного снижения ЖЕЛ, остаётся нормальным, ИТ остаётся в норме или выше нормы , скоростные показатели не изменены.


Рис. 6. ЖЕЛ, ФЖЕЛ, и структура ОЕЛ при рестриктивных нарушениях.

И при рестриктивном, и при обструктивном варианте нарушений вентиляции может наблюдаться изменение МОД и МВЛ. Увеличение МОД свидетельствует о гипервентиляции в состоянии покоя, чаще всего компенсаторного харктера, снижение МОД говорит о гиповентиляции при различных патологических состояниях. Снижение МВЛ может быть одним из ранних признаков уменьшения резервов дыхательного аппарата.

Достаточно часто у пациентов встречается смешанный тип нарушений вентиляционной функции, проявляющийся снижением и статических и динамических параметров вентиляции. Диагностику этого типа вентиляционных нарушений лучше проводить на основании анализа структуры ОЕЛ (уменьшение ОЕЛ и ООЛ в сочетании с признаками обструкции), т.к. ЖЕЛ иногда снижается при обструкции дыхательных путей без участия каких-либо ограничительных факторов.

Исследование структуры ОЕЛ, т.е. соотношения образующих её объёмных компонентов, помогает дифференцировать патофизиологические синдромы нарушений вентиляционной способности лёгких. Для определения ООЛ и ФОЕ применяются конвекционные методы, основанные на сохранении количества инертного индикаторного газа (азота или гелия) при его перемещении из ёмкости в ёмкость, а также барометрический метод – общая плетизмография. Хотя метод разведения гелия прост, его точнось зависит от полноты смешивания газа в лёгких и у пациентов с неравномерной вентиляцией результаты измерений могут быть неточными, кроме того процедура может занимать достаточно продолжительное время. Общая плетизмография является более быстрым и надёжным методом измерения объёма лёгких, однако требует более сложного технического оснащения. Принцип плетизмографии базируется на законе Бойля-Мариотта, согласно которому объём газа меняется обратно пропорционально приложенному давлению. Пациент при обследовании сидит в герметически закрытой кабине плетизмографа и дышит воздухом камеры через мундштук, который можно перекрывать электромагнитной заслонкой, изолируя дыхательные пути и лёгкие от объёма камеры. Обследуемый в конце спокойного выдоха делает короткий вдох и выдох при закрытой заслонке. Регистрация изменений давления в ротовой полости (как эквивалент альвеолярного давления) и внутригрудного объёма газа (как отражение колебаний давления в кабине) позволяют рассчитать ООЛ, ФОЕ, ОЕЛ, а также аэродинамическое (бронхиальное) сопротивление дыхательных путей Raw, характеризующее состояние просвета первых 8-10 генераций бронхов. Снижение ОЕЛ при неизменённой её структуре характерно для чистого (без сочетания с обструкцией) рестриктивного варианта нарушений вентиляционной способности лёгких. Абсолютная величина ООЛ и отношение ООЛ/ОЕЛ считаются важнейшими критериями при оценке эластичности лёгких и состояния бронхиальной проходимости. При значительном и стойком увеличении ООЛ/ОЕЛ% (50-60% и больше) можно говорить об эмфиземе лёгких.

Вышеперечисленные методы исследования позволяют установить не только тип нарушений ветиляции, но и степень отклонения тех или иных параметров от нормы. Границы нормы и отклонения от нормы при сравнении с должными показателями приведены в таблице:


Показатель

Норма

Условная

Отклонения показателя

умеренные

значительные

резкие

ЖЕЛ,

% должной

% должной

ОФВ1/ЖЕЛ,%
% должной
% должной

% должной

% должной

% должной

% должной



> 90
> 85
> 70

90-110
90-125

> 85
> 80
> 80
> 75


90-85
85-75
70-65
90-85
89-85
85-75
79-60
79-60
74-60

84-70
74-55
64-55
90-85
84-70
74-55
59-40
59-40
59-45

69-50
54-35
54-40
74-60
69-50

54-35
39-20
39-20
44-30



> 225

> +25

Нарушения вентиляционной функции внешнего дыхания могут приводить к развитию гипоксемии и гиперкапнии.

В заключении о состоянии вентиляционной функции указывается тип и степень выявленных нарушений, например: значительные нарушения вентиляции по обструктивному типу.

Исследования вентиляции можно дополнять бронходилатационными и бронхо-провокационными тестами. Бронходилатационные пробы применяются при обструктивном синдроме для выявления обратимого компонента обструкции – бронхоспазма. При наличии у пациента бронхоспазма ингаляция бронхолитического препарата через определённое время вызывает прирост функциональных показателей вентиляции, в частности ОФВ1, ПОС, МОС25,50,75. Рекомендации по оценке обратимости обструкции варьируют, но увеличение ОФВ1 на 15% и более по сравнению с исходной величиной можно рассматривать как положительную пробу. Бронхопровокационная проба представляет собой тест, помогающий определить восприимчивость дыхательных путей к различным бронхоконстрикторным агентам (гистамин, метахолин, аллергены, холодный воздух, физическая нагрузка и т.д.). Чаще всего проводится проба с фармакологическими раздражителями для диагностики бронхиальной астмы у пациентов с сомнительным диагнозом .

В условиях патологии возможны изменения не только вентиляции, но и диффузии, несмотря на то, что анатомо-физиологическая структура лёгких создаёт исключительно благоприятные условия для газообмена. Огромная площадь альвеолярной поверхности (70-80 м2) и обширная сеть лёгочных капилляров создают оптимальные условия для поглощения кислорода и выделения углекислого газа. Газообмен между альвеолярным воздухом и кровью совершается через альвеоло-капиллярную мембрану, которая состоит из эпителия альвеол, интерстициального слоя и эндотелия капилляров. На большей части поверхности газообмена общая толщина мембраны не превышает 1 мкм, достигая лишь на отдельных участках 5 мкм. Движение газа через альвеоло-капиллярную мембрану происходит путём диффузии, согласно закону Фика. В соответствии с этим законом, скорость переноса газа через мембрану прямо пропорциональна разнице парциального давления газа по обе стороны мембраны и константе мембраны, известной как диффузионная способность. Процесс диффузии кислорода в лёгких может считаться завершённым только после того, как молекулы кислорода вступят в химическую реакцию с гемоглобином, преодолев слой плазмы, стенку и слой протоплазмы эритроцита.

Диффузионные нарушения возникают при утолщении и изменении физико-химических свойств альвеоло-капиллярной мембраны (фиброзирующий альвеолит, канцероматоз, отёк лёгкого, саркоидоз и др.), уменьшении поверхности газообмена при уменьшении числа функционирующих альвеол и капилляров (сдавление и ателектаз лёгкого, недоразвитие лёгких, удаление части лёгкого), уменьшении количества крови в лёгочных капиллярах и уменьшении в ней гемоглобина . Всё это приводит к тому, что кровь покидает лёгочные капилляры раньше, чем успевает полностью завершиться её оксигенация. Диффузионные нарушения отражаются только на обмене кислорода, обладающего худшими, чем углекислый газ, диффузионными свойствами, и могут приводить к гипоксемии.

В клинической практике используются три метода измерения диффузионной способности лёгких (ДЛ), основанные на определении коцентрации окиси углерода (СО по молекулярной массе и растворимости близок к кислороду, но обладает в 210 раз большим сродством к гемоглобину) : метод одиночного вдоха, метод устойчивого состояния и метод возвратного дыхания. Наиболее широко применяется метод одиночного вдоха . При этом методе пациент из положения максимального выдоха вдыхает газовую смесь с низким содержанием СО (0,3%) и незначительным количеством гелия (10%) и задерживает дыхание на 10с, после чего делает полный выдох. Во время задержки дыхания некоторое количество СО диффундирует из альвеол в кровь. Это количество рассчитывается, исходя из содержания СО в альвеолярном газе в начале и в конце 10-секундной задержки дыхания. Альвеолярный объём, в котором происходил газообмен , измеряют по разведению гелия. На основании изменения концентрации СО во время задержки дыхания рассчитывается ДЛ. Используется также выражение ДЛ на 1 л объёма легких.

Для оценки состояния диффузионной способности лёгких, как и вентиляционной, производится сравнение полученных данных с должными показателями. В норме ДЛ составляет более 85% от должной, условная норма лежит в пределах 85-75% от должной. При умеренных нарушениях она снижается до 74-55%, при значительных – до 54-35% и при резких – менее 35% от должной величины.

Результаты большинства функциональных исследований внешнего дыхания зависят от усилий пациента и его желания сотрудничать с персоналом, проводящим обследование. В связи с этим , проведение тестов требует соблюдения методики исследования и предварительного инструктажа обследуемого. Должны быть записаны возраст, рост и вес, необходимые для расчёта должных величин. Пациент перед тестом должен избегать курения, энергичных физических упражнений, употребления алкоголя, обильной еды за 2 часа до исследования. Нельзя обследоваться в одежде, сдавливающей грудную клетку и затрудняющей движения брющной стенки, следует избегать использования бронходилататоров короткого действия (не менее чем за 4 часа до теста). Эти требования необходимо сообщить пациенту во время назначения исследования. Если пациент использовал перед обследованием бронхолитические препараты (ингаляционные или принимаемые внутрь), он должен сообщить об этом лаборанту и эти сведения должны быть записаны в протоколе теста.

Вышеперечисленные методы в ряде случаев необходимо дополнять исследованием газового состава крови, включающим определение степени насыщения крови кислородом (SaO2), парциального давления кислорода в артериальной крови (PaO2) и парциального давления углекислоты в артериальной крови (PaCO2) для выявления признаков дыхательной недостаточности. Cнижение SaO2 (норма –93-96%) и PaO2 (норма – 70-80 мм рт. ст.) указывает на артериальную гипоксемию; увеличение PaСO2 (норма 35–45 мм рт. ст) свидетельствует о гиперкапнии .

Литература


  1. Руководство по клинической физиологии дыхания / Под ред. Шика Л.Л., Канаева Н.Н. – Л.: Медицина, 1980.

  2. Болезни органов дыхания. Руков. для врачей в 4 томах / Под ред. Палеева Н.Р. – М., 1989.

  3. М. А. Гриппи. Патофизиология лёгких / М., Бином, 1997.

  4. Организация работы по исследованию функционального состояния лёгких методами спирографии и пневмотахографии и применеие этих методов в клинической практике: (Методические указания.) / Сост.: Турина О.И.,Лаптева И.М.,Калечиц О.М.,Маничев И.А.,Щербицкий В.Г. – Мн., 2002.

4749 0

Функциональная система дыхания

Функцию внешнего дыхания характеризуют показатели вентиляции и газообмена.

Исследование легочных объемов с помощью спирографии

а) жизненная емкость легких (ЖЕЛ) - объем воздуха максимального вдоха после максимального выдоха. Выраженное снижение ЖЭЛ наблюдается при нарушении функции дыхания;

Б) форсированная ЖЕЛ (ФЖЕЛ) - максимально быстрый вдох после максимально быстрого выдоха. Используется для оценки бронхиальной проводимости, эластичности легочной ткани;

В) максимальная вентиляция легких - максимально глубокое дыхание с максимально доступной частотой за 1 мин. Позволяет дать интегральную оценку состояния дыхательной мускулатуры, воздухоносной (бронхиальной) проходимости, состояния нервно-сосудистого аппарата легких. Выявляет дыхательную недостаточность и механизмы ее развития (рестрикция, бронхиальная обструкция);

Г) минутный объем дыхания (МОД) - количество вентилируемого воздуха за 1 мин с учетом глубины и частоты дыхания. МОД - мера легочной вентиляции, которая зависит от дыхательной и сердечной функциональной достаточности, качества воздуха, затруднения воздушной проходимости, в том числе диффузии газов, уровня основного обмена, угнетения дыхательного центра и т. д.;

Д) показатель остаточного объема легких (ПООЛ) - количество газа, находящегося в легких после максимального выдоха. Метод построен на определении задержанного после максимального выдоха объема гелия в легочной ткани во время свободного дыхания в замкнутой системе (спирограф - легкие) воздушно-гелиевой смесью. Остаточный объем характеризует степень функциональной возможности легочной ткани.

Увеличение ПООЛ наблюдается при эмфиземе и бронхиальной астме, а снижение -при пневмосклерозе, пневмонии и плеврите.

Исследование легочных объемов можно проводить как в покое, так при физической нагрузке. При этом можно использовать различные фармакологические агенты для получения более выраженного того или иного функционального эффекта.

Оценка бронхиальной проходимости, сопротивления дыхательных путей, напряжения и растяжимости легочной ткани.

Пневмотахография - определение скорости движения и мощности струи воздуха (пневмотахометрия) при форсированном вдохе и выдохе с одновременным измерением внутригрудного (внутрипищеводного) давления. Метод с физической нагрузкой и использованием фармакологических препаратов достаточно информативен для выявления и оценки функции бронхиальной проходимости.

Исследование функциональной достаточности системы дыхания. При спирографии с автоматической подачей кислорода определяют П02 - количество кислорода (в миллиметрах), которое поглощается легкими за 1 мин. Величина этого показателя зависит от функционального газообмена (диффузии), кровоснабжения легочной ткани, кислородной емкости крови, уровня окислительно-восстановительных процессов в организме. Резкое снижение поглощения кислорода свидетельствует о выраженной дыхательной недостаточности и об истощении резервных возможностей системы дыхания.

Коэффициент использования кислорода (КИO2) - это отношение П02 к МОД, показывающее количество поглощенного кислорода из 1 л вентилируемого воздуха. Его величина зависит от условий диффузии, объема альвеолярной вентиляции и ее координации с легочным кровоснабжением. Снижение КИо2 свидетельствует о несоответствии вентиляции и кровотока (сердечная недостаточность или гипервентиляция). Увеличение КИ02 указывает на наличие скрытой тканевой гипоксии.

Объективность данных спирографии и пневмотахометрии относительна, так как зависит от правильности выполнения всех методических условий самим пациентом, например от того, действительно ли максимально быстрый и глубокий вдох/выдох им сделан. Поэтому интерпретировать полученные данные приходится только в сопоставлении с клиническими характеристиками патологического процесса. В трактовке снижения значения ЖЕЛ, ФЖЕЛ и мощности выдоха, наиболее часто допускаются две ошибки.

Первая состоит в представлении, что степень снижения ФЖЕЛ и мощности выдоха всегда отражает степень обструктивной дыхательной недостаточности. Такое мнение неверно. В ряде случаев резкое уменьшение показателей при минимальной одышке связано с клапанным механизмом обструкции при форсированном выдохе, но мало выраженным при нормальной нагрузке. Правильной интерпретации помогает измерение ФЖЕЛ и мощности вдоха, которые снижаются тем меньше, чем более выражен клапанный механизм обструкции. Уменьшение ФЖЕЛ и мощности выдоха без нарушения бронхиальной проводимости является в ряде случаев результатом слабости дыхательной мускулатуры и ее иннервации.

Вторая частая ошибка при интерпретации: представление о снижении ФЖЕЛ как о признаке рестриктивной дыхательной недостаточности. На самом же деле это может быть признаком эмфиземы легких, т. е. последствием бронхиальной обструкции, а признаком рестрикции снижение ФЖЕЛ может быть лишь при снижении общей емкости легких, включающей кроме ЖЕЛ и остаточные объемы.

Оценка газотранспортной функции крови и напряженности эндогенного дыхания

Оксигемометрия - измерение степени насыщения артериальной крови кислородом. Метод основан на изменении спектра поглощения света связанным с кислородом гемоглобином. Известно, что степень оксигенации (S02) в легких составляет 96-98% от максимально возможной емкости крови (неполная за счет шунтирования легочных сосудов и неравномерности вентиляции) и зависит от парциального давления кислорода (Р02).

Зависимость S02 от Р02 выражают с помощью коэффициента диссоциации кислорода (КД02). Его увеличение свидетельствует о повышении сродства гемоглобина к кислороду (есть более прочная связь), что может наблюдаться при снижении парциального давления кислорода и температуры в легких в норме и при патологии эритроцитов или самого гемоглобина, а уменьшение (менее прочная связь) - при повышении парциального давления кислорода и температуры в тканях в норме и при патологии эритроцитов или самого гемоглобина. Сохранение дефицита насыщения при вдыхании чистого кислорода может свидетельствовать о наличии артериальной гипоксемии.

Время насыщения крови кислородом характеризует альвеолярную диффузию, общую емкость легких и крови, равномерность вентиляции, бронхиальную проходимость и остаточные объемы. Оксигемометрия при функциональных пробах (задержка дыхания на вдохе, выдохе) и субмаксимальной дозированной физической нагрузке дает добавочные критерии для оценки компенсаторных возможностей как легочной, так и газотранспортной функции системы дыхания.

Капногемометрия - метод, во многом идентичный оксигемометрии. С помощью транскутанных (чрескожных) датчиков определяют степень насыщения крови С02. При этом по аналогии с кислородом расчитывают КДШ2, величина которого зависит от уровня парциального давления углекислоты и температуры. В норме в легких КДШ2 низкий, а в тканях, наоборот, высокий.

Исследование кислотно-основного состояния (КОС) крови

Кроме исследования коэффициента диссоциации кислорода и углекислоты для оценки газотранспортной части фукции системы дыхания важно исследование буферных систем крови, так как большая часть вырабатываемой в тканях С02 аккумулируется именно ими, во многом определяя газовую проницаемость клеточных мембран и интенсивность клеточного газообмена. Подробно исследование К0С будет представлено в описании методов оценки гомеостатических систем.

Определение дыхательного коэффициента - отношение образовавшегося С02 в альвеолярном воздухе к потребленному 02 в покое и при нагрузке позволяет оценить степень напряжения эндогенного дыхания и его резервные возможности.

Подводя итог описанию некоторых методов оценки функции системы дыхания, можно констатировать, что данные методы исследования, особенно с использованием дозированной физической нагрузки (спировелоэргометрия) с одновременной регистрацией спирографии, пневмотахографии и характеристик газов крови, позволяют довольно точно определить функциональное состояние и функциональные резервы, а также тип и механизмы функциональной дыхательной недостаточности.