Среда обитания. Сравнение основных экологических факторов, играющих лимитирующую роль в наземно-воздушной и водной средах


Особенность наземно-воздушной среды – организмы, обитающие здесь, окружены воздухом – газообразной средой, характеризующейся низкой влажностью, плотностью, давлением и высоким содержанием кислорода.

Большинство животных передвигается по твердому субстрату – почве, а растения укореняются в ней.

У обитателей наземно-воздушной среды выработались приспособления:

1) органы, обеспечивающие усвоение атмосферного кислорода (устьица у растений, легкие и трахеи у животных);

2) сильное развитие скелетных образований, поддерживающих тело в воздушной среде (механические ткани у растений, скелет у животных);

3) сложные приспособления для защиты от неблагоприятных факторов (периодичность и ритмика жизненных циклов, механизмы терморегуляции и др.);

4) установилась тесная связь с почвой (корни у растений и конечности у животных);

5) характерна большая подвижность животных в поисках пищи;

6) появились летающие животные (насекомые, птицы) и переносимые ветром семена, плода, пыльца.

Экологические факторы наземно-воздушной среды регулируются макроклиматом (экоклиматом). Экоклимат (макроклимат) – климат больших территорий, характеризующийся определенными свойствами приземного слоя воздуха. Микроклимат – климат отдельных местообитаний (ствол дерева, нора животного и т.д.).

41.Экологические факторы наземно-воздушной среды.

1) Воздух:

Характеризуется постоянством состава (21% кислорода, 78% азота, 0,03% СО 2 и инертные газы). Является важным экологическим фактором, т.к. без атмосферного кислорода невозможно существование большинства организмов, СО 2 используется для фотосинтеза.

Передвижение организмов в наземно-воздушной среде осуществляется в основном по горизонтали, по вертикали перемещаются лишь некоторые насекомые, птицы и млекопитающие.

Воздух оказывает огромное значение на жизнедеятельность живых организмов посредством ветра – перемещение воздушных масс из-за неравномерного прогревания атмосферы Солнцем. Влияние ветра :

1) иссушает воздух, является причиной снижения интенсивности водного обмена у растений и животных;

2) участвует в опылении растений, разносит пыльцу;

3) снижает разнообразие летающих видов животных (сильный ветер мешает в полете);

4) вызывает изменения в строении покровов (образуются плотные покровы, предохраняющие растения и животных от переохлаждения и потери влаги);

5) участвует в расселении животных и растений (разносит плоды, семена, мелких животных).



2) Атмосферные осадки:

Важный экологический фактор, т.к. от наличия осадков зависит водный режим среды:

1) осадки изменяют влажность воздуха и почву;

2) обеспечивают доступную воду для водного питания растений и животных.

а) Дождь:

Наиболее важны сроки выпадения, частота выпадения, продолжительность.

Пример: обилие дождей в период похолодания не дает растениям необходимой влаги.

По характеру дожди:

- ливневые – неблагоприятны, т.к. растения не успевают всасывать воду, также образуются потоки, смывающие верхний плодородный слой почвы, растения, мелких животных.

- моросящие – благоприятны, т.к. обеспечивают увлажнение почвы, питание растений и животных.

- затяжные – неблагоприятны, т.к. вызывают наводнения, паводки и затопления.

б) Снег:

Благоприятно влияет на организмы в зимний период, т.к.:

а) создает благоприятный температурный режим почвы, защищает организмы от переохлаждения.

Пример: при температуре воздуха -15 0 С температура почвы под 20см слоем снега не ниже +0,2 0 С.

б) создает зимой среду для жизнедеятельности организмов (грызунов, куриных птиц и т.д.)

Приспособления животных к зимним условиям:

а) увеличивается опорная поверхность ног для хождения по снегу;

б) миграции и впадение в спячку (анабиоз);

в) переход на питание определенными кормами;

г) смена покровов и др.

Отрицательное влияние снега :

а) обилие снега ведет к механическим повреждениям у растений, выпреванию растений и их вымоканию во время таяния снега весной.

б) образование наста и гололедицы (затрудняет газообмен животных и растений, находящихся под снегом, создает трудности для добывания корма).

42.Влажность почв.

Основной фактор для водного питания первичных продуцентов – зеленых растений.

Виды почвенной воды:

1) Гравитационная вода – занимает широкие промежутки между частицами почвы и под действием силы тяжести уходит в более глубокие слои. Растения легко ее усваивают, когда она находится в зоне корневой системы. Запасы в почве пополняются осадками.



2) Капиллярная вода – заполняет мельчайшие пространства между частицами почвы (капилляры). Не перемещается вниз, удерживается силой сцепления. Из-за испарения с поверхности почвы образует восходящий ток воды. Хорошо усваивается растениями.

1) и 2) воды доступные для растений.

3) Химически связанная вода – кристаллизационная вода (гипс, глина и т.д.). Недоступна для растений.

4) Физически связанная вода – также недоступна для растений.

а) пленочная (рыхлосвязанная) – ряды диполей, последовательно облекающих друг друга. Удерживаются на поверхности почвенных частиц силой от 1 до 10 атм.

б) гигроскопическая (прочносвязанная) – окутывает почвенные частицы тонкой пленкой и удерживается силой от 10000 до 20000 атм.

Если в почве находится только недоступная вода, растение вянет и погибает.

Для песка КЗ = 0,9%, для глины = 16,3%.

Общее количество воды – КЗ = степень обеспеченности растения водой.

43.Географическая зональность наземно-воздушной среды.

Для наземно-воздушной среды характерна вертикальная и горизонтальная зональность. Каждая зона характеризуется специфическим экоклиматом, составом животных и растений, территорией.

Климатические зоны → климатические подзоны → климатические провинции.

Классификация Вальтера:

1) Экваториальная зона – находится между 10 0 северной широты и 10 0 южной широты. Имеет 2 дождливых сезона, соответствующих положению Солнца в зените. Годовое количество осадков и влажность велики, месячные колебания температуры незначительны.

2) Тропическая зона – находится севернее и южнее экваториальной, до 30 0 северной и южной широты. Характерны летний дождливый период и зимняя засуха. Количество осадков и влажность уменьшается по мере удаления от экватора.

3) Зона сухих субтропиков – находится до 35 0 широты. Сумма осадков и влажность незначительны, годовые и суточные колебания температур весьма существенны. Редко бывают заморозки.

4) Переходная зона – характерны сезоны зимних дождей, жаркое лето. Заморозки бывают чаще. Средиземноморье, Калифорния, юг и юго-запад Австралии, юго-запад Южной Америки.

5) Умеренная зона – отличается циклоническими осадками, количество которых уменьшается по мере удаления от океана. Годовое колебание температур резкое, лето жаркое, зима морозная. Разделяют на подзоны:

а) подзона теплого умеренного климата – зимний период практически не выделяется, все времена года более или менее влажные. Южная Африка.

б) подзона типичного умеренного климата – холодная непродолжительная зима, прохладное лето. Центральная Европа.

в) подзона аридного умеренного климата континентального типа – характерны резкие температурные контрасты, небольшая сумма осадков, незначительная влажность воздуха. Центральная Азия.

г) подзона бореального, или холодного умеренного климата – лето прохладное и влажное, зима длится половина года. Север Северной Америки и Северная Евразия.

6) Арктическая (антарктическая) зона – характеризуется выпадением незначительного количества осадков в виде снега. Лето (полярный день) короткое и холодное. Эта зона переходит в полярную область, в которой существование растений невозможно.

Для Беларуси характерен умеренно континентальный климат с дополнительным увлажнением. Отрицательные стороны климата Беларуси:

Неустойчивая погода весной и осенью;

Мягкая, с продолжительными оттепелями весна;

Дождливое лето;

Поздние весенние и ранние осенние заморозки.

Несмотря на это в Беларуси произрастает около 10000 видов растений, обитает 430 видов позвоночных животных и около 20000 видов беспозвоночных животных.

Вертикальная зональность – от низменностей и оснований гор до вершин гор. Подобна горизонтальной с некоторыми отклонениями.

44.Почва как Среда жизни. Общая характеристика.

Лекция 3 СРЕДЫ ОБИТАНИЯ И ИХ ХАРАКТЕРИСТИКИ (2ч)

1.Водная среда обитания

2.Наземно-воздушная среда обитания

3.Почва, как среда обитания

4.Организм, как среда обитания

В процессе исторического развития живые организмы освоили четыре среды обитания. Первая – вода. В воде жизнь зародилась и развивалась многие миллионы лет. Вторая – наземно-воздушная – на суше и в атмосфере возникли и бурно адаптировались к новым условиям растения и животные. Постепенно преобразуя верхний слой суши - литосферы, они создали третью среду обитания – почву, а сами стали четвертой средой обитания.

    Водная среда обитания - гидросфера

Экологические группы гидробионтов. Наибольшим разнообразием жизни отличаются теплые моря и океаны (40000 видов животных) в области экватора и тропиках, к северу и югу происходит обеднение флоры и фауны морей в сотни раз. Что касается распределения организмов непосредственно в море, то основная масса их сосредоточена в поверхностных слоях (эпипелагиаль) и в сублиторальной зоне. В зависимости от способа передвижения и пребывания в определенных слоях, морские обитатели подразделяются на три экологические группы: нектон, планктон и бентос.

Нектон (nektos – плавающий) - активно передвигающиеся крупные животные, способные преодолевать большие расстояния и сильные течения: рыбы, кальмары, ластоногие, киты. В пресных водоемах к нектону относятся и земноводные и множество насекомых.

Планктон (planktos – блуждающий, парящий) – совокупность растений (фитопланктон: диатомовые, зеленые и сине-зеленые (только пресные водоемы) водоросли, растительные жгутиконосцы, перидинеи и др.) и мелких животных организмов (зоопланктон: мелкие ракообразные, из более крупных – крылоногие моллюски, медузы, гребневики, некоторые черви), обитающих на разной глубине, но не способных к активным передвижениям и к противостоянию течениям. В состав планктона входят и личинки животных, образуя особую группу – нейстон. Это пассивно плавающее «временное» население самого верхнего слоя воды, представленное разными животными (десятиногие, усоногие и веслоногие ракообразные, иглокожие, полихеты, рыбы, моллюски и др.) в личиночной стадии. Личинки, взрослея, переходят в нижние слои пелагели. Выше нейстона располагается плейстон – это организмы, у которых верхняя часть тела растет над водой, а нижняя – в воде (ряска – Lemma, сифонофоры и др.). Планктон играет важную роль в трофических связях биосферы, т.к. является пищей для многих водных обитателей, в том числе основным кормом для усатых китов (Myatcoceti).

Бентос (benthos – глубина) – гидробионты дна. Представлен в основном прикрепленными или медленно передвигающимися животными (зообентос: фораминефоры, рыбы, губки, кишечнополостные, черви, плеченогие моллюски, асцидии, и др.), более многочисленными на мелководье. На мелководье в бентос входят и растения (фитобентос: диатомовые, зеленые, бурые, красные водоросли, бактерии). На глубине, где нет света, фитобентос отсутствует. У побережий встречаются цветковые растения зостера, рупия. Наиболее богаты фитобентосом каменистые участки дна.

В озерах зообентос менее обилен и разнообразен, чем в море. Его образуют простейшие (инфузории, дафнии), пиявки, моллюски, личинки насекомых и др. Фитобентос озер образован свободно плавающими диатомеями, зелеными и сине-зелеными водорослями; бурые и красные водоросли отсутствуют.

Укореняющиеся прибрежные растения в озерах образуют четко выраженные пояса, видовой состав и облик которых согласуются с условиями среды в пограничной зоне «суша-вода». В воде у самого берега растут гидрофиты – полупогруженные в воду растения (стрелолист, белокрыльник, камыши, рогоз, осоки, трищетинник, тростник). Они сменяются гидатофитами – растениями, погруженными в воду, но с плавающими листьями (лотос, ряски, кубышки, чилим, такла) и – далее – полностью погруженными (рдесты, элодея, хара). К гидатофитам относятся и плавающие на поверхности растения (ряска).

Высокая плотность водной среды определяет особый состав и характер изменения жизнеобеспечивающих факторов. Одни из них те же, что и на суше – тепло, свет, другие специфические: давление воды (с глубиной увеличивается на 1 атм. на каждые 10 м), содержание кислорода, состав солей, кислотность. Благодаря высокой плотности среды, значения тепла и света с градиентом высоты изменяются гораздо быстрее, чем на суше.

Тепловой режим. Для водной среды характерен меньший приход тепла, т.к. значительная часть его отражается, и не менее значительная часть расходуется на испарение. Согласуясь с динамикой наземных температур, температура воды обладает меньшими колебаниями суточных и сезонных температур. Более того, водоемы существенно выравнивают ход температур в атмосфере прибрежных районов. При отсутствии ледового панциря моря в холодное время года оказывают отепляющее действие на прилегающие территории суши, летом – охлаждающее и увлажняющее.

Диапазон значений температуры воды в Мировом океане составляет 38° (от -2 до +36°С), в пресных водоемах – 26° (от -0,9 до +25°С). С глубиной температура воды резко падает. До 50 м наблюдаются суточные колебания температуры, до 400 – сезонные, глубже она становится постоянной, опускаясь до +1-3°С (в Заполярье близка к 0°С). Поскольку температурный режим в водоемах сравнительно стабилен, их обитателям свойственна стенотермность. Незначительные колебания температуры в ту или иную сторону сопровождается существенными изменениями в водных экосистемах.

Примеры: «биологический взрыв» в дельте Волги из-за понижения уровня Каспийского моря – разрастание зарослей лотоса (Nelumba kaspium), в южном Приморье – зарастание белокрыльником стариц рек (Комаровка, Илистая и др.) по берегам которых вырублена и сожжена древесная растительность.

В связи с разной степенью прогревания верхних и нижних слоев в течение года, приливами и отливами, течениями, штормами происходит постоянное перемешивание водных слоев. Роль перемешивания воды для водных обитателей (гидробионтов) исключительно велика, т.к. при этом выравнивается распределение кислорода и питательных веществ внутри водоемов, обеспечивая обменные процессы между организмами и средой.

В стоячих водоемах (озерах) умеренных широт весной и осенью имеет место вертикальное перемешивание, и в эти сезоны температура во всем водоеме становится однородной, т.е. наступает гомотермия. Летом и зимой в результате резкого усиления прогревания или охлаждения верхних слоев перемешивание воды прекращается. Это явление называется температурной дихотомией, а период временного застоя – стагнацией (летней или зимней). Летом более легкие теплые слои остаются на поверхности, располагаясь над тяжелыми холодными (рис. 3). Зимой, наоборот, в придонном слое более теплая вода, так как непосредственно подо льдом температура поверхностных вод меньше +4°С и они в силу физико-химических свойств воды становятся более легкими, чем вода с температурой выше +4°С.

В периоды стагнаций четко выделяются три слоя: верхний (эпилимнион) с наиболее резкими сезонными колебаниями температуры воды, средний (металимнион или термоклин), в котором происходит резкий скачок температур, и придонный (гиполимнион), в котором температура в течение года изменяется слабо. В периоды стагнаций в толще воды образуется дефицит кислорода – летом в придонной части, а зимой и в верхней, вследствие чего в зимний период нередко происходят заморы рыбы.

Световой режим. Интенсивность света в воде сильно ослаблена из-за его отражения поверхностью и поглощения самой водой. Это сильно сказывается на развитии фотосинтезирующих растений. Чем меньше прозрачность воды, тем сильнее поглощается свет. Прозрачность воды лимитируется минеральными взвесями, планктоном. Уменьшается она при бурном развитии мелких организмов летом, а в умеренных и северных широтах – еще и зимой, после установления ледового покрова и укрытия его сверху снегом.

В океанах, где вода очень прозрачна, на глубину 140 м проникает 1% световой радиации, а в небольших озерах на глубине 2 м проникает всего лишь десятые доли процента. Лучи разных частей спектра поглощаются в воде неодинаково, вначале поглощаются красные лучи. С глубиной становится все темнее, и цвет воды становится вначале зеленым, затем голубым, синим и в конце – сине-фиолетовым, переходя в полный мрак. Соответственно меняют цвет и гидробионты, адаптирующиеся не только к составу света, но и к его недостатку – хроматическая адаптация. В светлых зонах, на мелководьях, преобладают зеленые водоросли (Chlorophyta), хлорофилл которых поглощают красные лучи, c глубиной они сменяются бурыми (Phaephyta) и далее красными (Rhodophyta). На больших глубинах фитобентос отсутствует.

К недостатку света растения приспособились развитием хроматофоров крупных размеров, обеспечивающих низкую точку компенсации фотосинтеза, а также увеличением площади ассимилирующих органов (индекса листовой поверхности). Для глубоководных водорослей типичны сильно рассеченные листья, пластинки листьев тонкие, просвечивающиеся. Для полупогруженных и плавающих растений характерна гетерофиллия – листья над водой такие же, как у наземных растений, имеют цельную пластинку, развит устьичный аппарат, а в воде листья очень тонкие, состоят из узких нитевидных долей.

Гетерофиллия: кубышки, кувшинки, стрелолист, чилим (водяной орех).

Животные, как и растения, закономерно меняют свою окраску с глубиной. В верхних слоях они ярко окрашены в разные цвета, в сумеречной зоне (морской окунь, кораллы, ракообразные) окрашены в цвета с красным оттенком – удобнее скрываться от врагов. Глубоководные виды лишены пигментов.

Характерными свойствами водной среды, отличными от суши, являются высокая плотность, подвижность, кислотность, способность растворения газов и солей. Для всех этих условий у гидробионтов исторически выработаны соответствующие приспособления-адаптации.

2.Наземно-воздушная среда обитания

В ходе эволюции эта среда была освоена позже, чем водная. Ее особенность заключается в том, что она газообразная, поэтому характеризуется низкими влажностью, плотностью и давлением, высоким содержанием кислорода. В ходе эволюции у живых организмов выработались необходимые анатомо-морфологические, физиологические, поведенческие и другие адаптации.

Животные в наземно-воздушной среде передвигаются по почве или по воздуху (птицы, насекомые), а растения укореняются в почве. В связи с этим, у животных появились легкие и трахеи, а у растений – устьичный аппарат, т.е. органы, которыми сухопутные обитатели планеты усваивают кислород прямо из воздуха. Сильное развитие получили скелетные органы, обеспечивающие автономность передвижения по суше и поддерживающие тела со всеми его органами в условиях незначительной плотности среды, в тысячи раз меньшей по сравнению с водой. Экологические факторы в наземно-воздушной среде отличаются от других сред обитания высокой интенсивностью света, значительными колебаниями температуры и влажности воздуха, корреляцией всех факторов с географическим положением, сменой сезонов года и времени суток. Воздействия их на организмы неразрывно связано с движением воздуха и положения относительно морей и океанов и сильно отличаются от воздействия в водной среде (табл. 1).

Условия обитания организмов воздушной и водной среды

(по Д. Ф. Мордухай-Болтовскому, 1974)

воздушной среды

водной среды

Влажность

Очень важное (часто в дефиците)

Не имеет (всегда в избытке)

Плотность

Незначительное(за исключением почвы)

Большое по сравнению с ее ролью для обитателей воздушной среды

Давление

Почти не имеет

Большое (может достигать 1000 атмосфер)

Температура

Существенное (колеблется в очень больших пределах – от -80 до +1ОО°С и более)

Меньшее по сравнению со значением для обитателей воздушной среды (колеблется гораздо меньше, обычно от -2 до +40°С)

Кислород

Несущественное(большей частью в избытке)

Существенное (часто в дефиците)

Взвешенные вещества

Неважное; не используются в пищу (главным образом минеральные)

Важное (источник пищи, особенно органические вещества)

Растворенные вещества в окружающей среде

В некоторой степени (имеют значение только в почвенных растворах)

Важное (в определенном количестве необходимы)

У животных и растений суши выработались свои, не менее оригинальные адаптации на неблагоприятные факторы среды: сложное строение тела и его покровов, периодичность и ритмика жизненных циклов, механизмы терморегуляции и пр. Выработалась целенаправленная подвижность животных в поисках пищи, появились переносимые ветром споры, семена и пыльца растений, а также растения и животные, жизнь которых всецело связана с воздушной средой. Сформировалась исключительно тесная функциональная, ресурсная и механическая взаимосвязь с почвой.

Многие из адаптаций были рассмотрены нами выше, в качестве примеров при характеристике абиотических факторов среды. Поэтому сейчас повторяться нет смысла, т.б., что к ним мы вернемся еще на практических занятиях

Наземно-воздушная среда характеризуется особенностями экологических условий, сформировавших специфические приспособления у сухопутных растений и животных, что выразилось в разнообразии морфологических, анатомических, физиологических, биохимических и поведенческих адаптаций.

Низкая плотность атмосферного воздуха затрудняет поддержание формы тела, потому у растений и животных образовалась опорная система. У растений это механические ткани (лубяные и древесинные волокна), которые обеспечивают сопротивление статическим и динамическим нагрузкам: ветру, дождю, снежному покрову. Напряженное состояние клеточной стенки (тургор), вызванное накоплением в вакуолях клеток жидкости с высоким осмотическим давлением обусловливает упругость листьев, стеблей трав, цветков. У животных опору телу создает гидроскелет (у круглых червей), наружный скелет (у насекомых), внутренний (у млекопитающих).

Низкая плотность среды облегчает передвижение животных. Многие наземные виды способны к полету (активному или планирующему) - птицы и насекомые, есть и представители млекопитающих, амфибий и рептилий. Полет связан с передвижением и поиском добычи Активный полет возможен за счет модифицированных передних конечностей, развитых грудных мышц. У планирующих животных образовались между передними и задними конечностями сформировались кожные складки, которые растягиваются и играют роль парашюта.

Высокая подвижность воздушных масс сформировала у растений древнейший способ опыления растений ветром (анемофилия) характерную для многих растений средний полосы и расселения с помощью ветра. Эта экологическая группа организмов (аэропланктон) адаптировалась благодаря большой относительной площади поверхности за счет парашютиков, крыльев, выростов и даже паутины, либо за счет очень мелких размеров.

Низкое атмосферное давление, которое в норме составляет 760 мм ртутного столба (или 101 325 Па), малые перепады давления, сформировали почти у всех обитателей суши чувствительность к сильным перепадам давления. Верхняя граница жизни для большинства позвоночных животных - около 6 000 м. Снижение атмосферного давления с повышением высоты над уровнем моря уменьшает растворимость кислорода в крови. Это увеличивает частоту дыхания, а в результате частое дыхание приводит к обезвоживанию организма. Эта простая зависимость не характерна только для редких видов птиц и некоторых беспозвоночных.

Газовый состав наземно-воздушной среды отличается высоким содержанием кислорода (более чем в 20 раз выше, чем в водной среде). Это позволяет животным иметь очень высокий уровень обмена веществ. Поэтому только на суше могла возникнуть гомойтермность (способность поддерживать постоянную температуру тела, в основном, за счет внутренней энергии).



Значение температуры в жизни организмов определяется влиянием на скорость биохимических реакций. Повышение температуры (до 60 ° С) окружающей среды вызывает у организмов денатурацию белков. Сильное понижение температуры приводит к понижению скорости обмена веществ и как критическое состояние – замерзание воды в клетках (кристаллы льда в клетках нарушают целостность внутриклеточных структур). В основном на суше живые организмы могут существовать только в пределах 0 ° - +50 ° , т.к. эти температуры совместимы с протеканием основных процессов жизнедеятельности. Однако каждый вид имеет свое верхнее и нижнее летальное значение температуры, значение температурного угнетения и температурного оптимума.

Организмы, жизнедеятельность и активность которых зависят от внешнего тепла (микроорганизмы, грибы, растения, беспозвоночные, круглоротые, рыбы, земноводные, пресмыкающиеся) называются пойкилотермами. Среди них есть стенотермы (криофилы - приспособлены небольшим перепадам низких температур и термофилы - приспособлены небольшим перепадам высоких температур) и эвритермы, которые могут существовать при пределах большой температурной амплитуде. Приспособления к перенесению низких температур, позволяющие регулировать обмен веществ в течение длительного времени, осуществляется у организмов двумя способами: а) способность к биохимическим и физиологическим перестройкам - накопление антифризов, которые понижают точку замерзания жидкостей в клетках и тканях и следовательно препятствуют образованию льда; изменение набора, концентрации и активности ферментов, изменение; б) выносливость к замерзанию (холодостойкость) - это временное прекращение активного состояния (гипобиоз или криптобиоз) или накопление в клетках глицерина, сорбита, маннита, которые препятствуют кристаллизации жидкости.

У эвритермов хорошо развита способность перехода в латентное состояние при значительных отклонениях температуры от оптимального значения. После холодового угнетения организмы при определенной температуре восстанавливают нормальный обмен веществ, а это значение температуры называется температурным порогом развития, или биологическим нулем развития.

В основе сезонных перестроек у видов – эвритермов, имеющих широкое распространение, лежит акклимация (сдвиг температурного оптимума), когда происходит инактивация одних генов и включение других, отвечающих за замену одних ферментов другими. Это явление обнаруживается в разных частях ареала.

У растений метаболическое тепло крайне ничтожно, поэтому их существование определяется температурой воздуха в пределах местообитания. Растения адаптируются к перенесению достаточно больших колебаний температуры. Главным при этом является транспирация, охлаждающая поверхность листьев при перегреве; уменьшение листовой пластинки, подвижность листа, опушение, восковой налет. К холодным условия растения приспосабливаются с помощью формы роста (карликовость, подушковидный рост, шпалерность), окраски. Все это относится к физической терморегуляии. Физиологическая терморегуляция – это опад листвы, отмирание наземной части, перевод свободной воды в связанное состояние, накопление антифризов и т. д.).

Пойкилотермные животные имеют возможность испарительной терморегуляции, связанной с их перемещением в пространстве (земноводные, рептилии). Они выбирают наиболее оптимальные условия, производят много внутреннего (эндогенного) тепла в процессе сокращения мускулатуры или мышечной дрожи (разогревают мышцы во время передвижения). Животные имеют поведенческие адаптации (поза, укрытия, норы, гнезда).

Гомойтермные животные (птицы и млекопитающие) имеют постоянную температуру тела и мало зависят от температуры окружающей среды. Для них характерны адаптации, основанные на резком повышении окислительных процессов в результате совершенства нервной, кровеносной, дыхательной и других систем органов. У них существует биохимическая терморегуляция (при понижении температуры воздуха усиливается обмен липидов; усиливаются окислительные процессы, особенно в скелетных мышцах; есть специализированная бурая жировая ткань, в которой вся освобождающаяся химическая энергия идет на образование АТФ, а на обогревание организма; увеличивается объем потребляемой пищи). Но такая терморегуляция имеет климатические ограничения (невыгодна зимой, в полярных условия, летом в тропическом и экваториальном поясах).

Экологически выгодна физическая терморегуляция(рефлек-торное сужение и расширение кровеносных сосудов кожи, теплоизоляционное действие меха и перьев, противоточный теплообмен), т.к. осуществляется за счет сохранения тепла в теле (Чернова, Былова, 2004).

Поведенческая терморегуляция гомойтермов характеризуется разнообразием: изменение позы, поиски укрытий, сооружение сложных нор, гнезд, миграции, групповое поведение и пр.

Важнейшим экологическим фактором для организмов является свет. Процессы, протекающие под действием света - это фотосинтез (используется 1-5% падающего света), транспирация (используется 75% падающего света расходуется на испарение воды), синхронизация жизнедеятельности, движение, зрение, синтез витаминов.

Морфология растений и структура растительных сообществ организованы для наиболее эффективного восприятия солнечной энергии. Светоприемная поверхность растений Земного шара в 4 раза больше, чем поверхность планеты (Акимова, Хаскин, 2000). Для живых организмов имеет значение длина волн, т.к. лучи разной длины имеют разное биологическое значение: инфракрасное излучение (780 – 400 нм) действует на тепловые центры нервной системы, регулируя окислительные процессы, двигательные реакции и др, ультрафиолетовые лучи (60 - 390 нм) действуя на покровные ткани, способствуют выработке различных витаминов, стимулируют рост и размножение клеток.

Особое значение имеет видимый свет, т.к. для растений важен качественный состав света. В спектре лучей выделяют фотосинтетическую активную радиацию (ФАР). Длина волн этого спектра лежит в пределах 380 – 710 (370- 720 нм).

Сезонная динамика освещенности связана с закономерностями астрономического характера, сезонной климатической ритмикой данной местности и на разных широтах выражена по разному. Для нижних ярусов на эти закономерности налагается и фенологическое состояние растительности. Большое значение имеет суточный ритм изменения освещенности. Ход радиации нарушается изменениями состояния атмосферы, облачности и др. (Горышина,1979).

Растение представляет собой непрозрачное тело, которое частично отражает свет, поглощает и пропускает. В клетках и тканях листьев есть различные образования которые обеспечивают поглощение и пропускание света Для повышения продуктивности растения увеличивают общую площадь и количество фотосинтезирующих элементов, что достигается многоэтажным расположением листьев на растении; ярусным расположением растений в сообществе.

По отношению к силе освещения выделяют три группы: светолюбивые, тенелюбивые, теневыносливые, которые отличаются анатомо-морфологическими адаптациями (у светолюбивых растений листья - мельче, подвижные, опушенные, имеют восковой налет, толстую кутикулу, кристаллические выключения и др. у тенелюбивых - листья крупные, хлоропласты крупные и многочисленные); физиологическими адаптациями (разные значения световой компенсации).

Реакция на длину светового дня (продолжительность освещения) называется фотопериодизмом. У растений такие важные процессы как цветение, образование семян, рост, переход в состояние покоя, листопад связан с сезонными изменениями длины дня и температурой. Для цветения одних растений нужна длина дня свыше 14 часов, для других достаточно 7 часов, третьи цветут независимо от длины дня.

Для животных свет информационное значение. Прежде всего по суточной активности животные делятся на дневных, сумеречных, ночных. Органом, помогающим ориентироваться в пространстве, являются глаза. У разных организмов разное стереоскопическое зрение - у человека общее зрение 180 ° - стереоскопическое-140 ° , у кролика - общее 360 ° , стереоскопическое20 ° . Бинокулярное зрение в основном характерно для хищных животных (кошачьих и птиц). Кроме того, реакцией на свет определяется фототаксис (движение на свет),

размножение, навигация (ориентирование на положение Солнца), биолюминенценция. Свет является сигналом для привлечения особей другого пола.

Важнейшим экологическим фактором в жизни наземных организмов является вода. Она необходима для поддержания структурной целостности клеток, тканей, всего организма, т.к. является основной частью протоплазмы клеток, тканей, растительных и животных соков. Благодаря воде осуществляются биохимические реакции, поступление питательных веществ, газообмен, выделение и др. Содержание воды в организме растений и животных достаточно высокое (в листьях трав - 83-86%, листьях деревьев - 79-82%. стволах деревьев 40-55%, в телах насекомых - 46-92%, земноводных – до 93%, млекопитающих - 62-83%).

Существование в наземно-воздушной среде ставит перед организмами важную проблему сохранения воды в теле. Поэтому форма и функции растений и животных суши приспособлены к защите от иссушения. В жизни растений важно поступление воды, проведение ее и транспирация, водный баланс, (Вальтер, 1031,1937, Шафер, 1956). Изменения водного баланса лучше всего отражает сосущая сила корней.

Растение может всасывать воду из почвы до тех пор, пока сосущая сила корней может конкурировать с сосущей силой почвы. Сильно разветвленная корневая система обеспечивает большую площадь соприкосновения поглощающей части корня с почвенными растворами. Общая протяженность корней может достигать 60 км. Сосущая сила корней меняется в зависимости от погоды, от экологических свойств. Чем больше всасывающая поверхность корней, тем больше поглощается воды.

По регуляции водного баланса растения делятся на пойкилогидрические (водоросли, мхи, папоротники, некоторые цветковые) и гомойгидрические (большинство высших растений).

По отношению к водному режиму выделяют экологические группы растений.

1. Гигрофиты - наземные растения, обитающие во влажных местообитаниях с высокой влажностью воздуха и почвенным водоснабжением. Характерными признаками гигрофитов являются толстые слаборазветвленные корни, воздухоносные полости в тканях, открытые устьица.

2. Мезофиты-растения умеренно увлажненных местообитаний. Способность переносить почвенную и атмосферную засуху у них ограничены. Могут встречаться в засушливых местообитаниях - быстро развиваясь за короткий период. Характерна хорошо развитая корневая система с многочисленными корневыми волосками, регуляция интенсивности транспирации.

3. Ксерофиты - растения сухих местообитаний. Это засухоустойчиваые растения, сухотерпцы. Степные ксерофиты могут терять без ущерба до 25 % воды, пустынные - до 50% содержащейся в них воды (для сравнения лесные мезофиты увядают при потере 1% содержащейся в листьях воды). По характеру анатомо-морфологических и физиологических адаптаций, обеспечивающих активную жизнь этих растений при дефиците влаги, ксерофиты делятся на суккуленты (имеют мясистые и сочные листья и стебли, способны накапливать в тканях большое количество воды, развивают небольшую сосущую силу и впитывают влагу атмосферных осадков) и склерофиты (сухие на вид растения, интенсивно испаряющие влагу, имеют узкие и мелкие листья, которые иногда сворачиваются в трубочку, способны выдерживать сильное обезвоживание, сосущая сила корней может быть до нескольких десятков атмосфер).

У разных групп животных в процессе приспособления к условиям наземного существования главным было предотвращение потерь воды. Животные получают воду разными способами – через питье, с сочной пищей, в результате метаболизма (за счет окисления и расщепления жиров, белков и углеводов). Некоторые животные могут впитывать воду через покровы из влажного субстрата или воздуха. Потери воды происходят в результате испарения с покровов, испарения со слизистых оболочек дыхательных путей, выделения мочи и непереваренных остатков пищи. Животные, получающие воду через питье, зависят от расположения водоемов (крупные млекопитающие, многие птицы).

Важным фактором для животных является влажность воздуха, т.к. этот показатель определяет величину испарения с поверхности тела. Именно поэтому для водного баланса организма животных имеет значение строение покровов тела. У насекомых уменьшение испарения воды с поверхности тела обеспечивает почти непроницаемая кутикула и специализированные органы выделения (мальпигиевы трубочки), выделяющие почти нерастворимый продукт обмена, и дыхальца, уменьшающие потери воды через систему газообмена - через трахеи и трахеолы.

У амфибий основная масса воды в организм поступает через проницаемую кожу. Проницаемость кожи регулируется гормоном, который выделяется задней долей гипофиза. Амфибии выделяют очень большое количество разбавленной мочи, гипотоничной по отношению к жидкостям тела. В засушливых условиях амфибии могут уменьшать потери воды с мочой. Кроме того, эти животные могут накапливать воду в мочевом пузыре и подкожных лимфатических пространствах.

Рептилии обладают множеством адаптаций разного уровня - морфологических (потере воды препятствует ороговевшая кожа), физиологических (легкие, расположенные внутри тела, что снижает потери воды), биохимических (в тканях образуется мочевая кислота, которая выводится без большой потери влаги, ткани способны переносить повышение концентрации солей на 50%).

У птиц скорость испарения невелика (кожа относительно непроницаема для воды, отсутствуют потовые железы и перья). Птицы теряют воду (до 35% веса тела за сутки) при дыхании из-за высокой вентиляции в легких и высокой температурой тела. У птиц есть процесс реабсорбции воды из части воды из мочи и фекалий. У некоторых морских птиц (пингвины, олуши, бакланы, альбатросы), которые питаются рыбой и пьют морскую воду, есть солевые железы, расположенные в глазницах, с помощью которых выводится избыток солей из организма.

У млекопитающих органами выделения и осморегуляции служат парные сложно устроенные почки, которые снабжаются кровью и регулируют состав крови. Это обеспечивает постоянный состав внутриклеточной и внутритканевой жидкости. Относительно стабильное осмотическое давление крови поддерживается за счет баланса между поступлением воды с питьем и потерей воды с выдыхаемым воздухом, потом, выделяемыми калом и мочой. Ответственным за тонкую регуляцию осмотического давления является антидиуретический гормон (АДГ), который выделяется из задней доли гипофиза.

Среди животных выделяют группы: гигрофилов, у которых механизмы регуляции водного обмена слабо развиты или вообще отсутствуют (это влаголюбивые животные, нуждающиеся в высокой влажности среды - ногохвостки, мокрицы, комары, другие членистоногие, наземные моллюски и амфибии); ксерофилов, имеющих хорошо развитые механизмы регуляции водного обмена и приспособления к удержанию воды в теле, обитающих в засушливых условиях; мезофилов, обитающих в условиях умеренной влажности.

Косвенно действующим экологическим фактором в наземно-воздушной среде является рельеф. Все формы рельефа влияют на распространение растений и животных через изменение гидротермического режима или почвенно-грунтового увлажнения.

В горах на разной высоте над уровнем моря изменяются климатические условия, следствием чего является высотная поясность. Географическая изоляция в горах способствует образованию эндемиков, сохранению реликтовых видов растений и животных. Речные поймы способствую продвижению на север более южных группировок растений и животных. Большое значение имеет экспозиция склонов, которая создает условия для распространения на север по южным склонам теплолюбивых сообществ, а по северным склонам на юг холодолюбивых сообществ («правило предварения», В.В. Алехина).

Почва существует только в наземно-воздушной среде и формируется в результате взаимодействия возраста территории, материнской породы, климата, рельефа, растений и животных, деятельности человека. Экологическое значение имеет механический состав (размер минеральных частиц), химический состав (рН водного раствора), засоление почв, почвенное богатство. Характеристики почв также действуют на живые организмы как косвенные факторы, изменяя термо-гидрологический режим, вызывая у растений (в первую очередь) приспособления к динамике этих условий и влияя на пространственную дифференциацию организмов.

Наземно-воздушная среда обитания

ОСНОВНЫЕ СРЕДЫ ЖИЗНИ

ВОДНАЯ СРЕДА

Водная среда жизни (гидросфера) занимает 71 % площади земного шара. Более 98 % воды сосредоточено в морях и океанах, 1,24 % - льды полярных областей, 0.45 % - пресные воды рек, озер, болот.

В мировом океане различают две экологические области:

толщу воды – пелагиаль , и дно - бенталь .

В водной среде обитает примерно 150 000 видов животных, или около 7 % от их общего количества и 10 000 видов растений – 8%. Различают следующие экологические группы гидробионтов. Пелагиаль - заселена организмами подразделяющимися на нектон и планктон.

Нектон (нектос – плавающий)- это совокупность пелагических активно передвигающихся животных, не имеющих непосредственной связи с дном. В основном это крупные животные, способные преодолевать большие расстояния и сильные водные течения. Для них характерна обтекаемая форма тела и хорошо развитые органы движения (рыбы, кальмары, ластоногие, киты) В пресных водах к нектону кроме рыб относятся земноводные и активно перемещающиеся насекомые.

Планктон (блуждающий, парящий)- это совокупность пелагических организмов, не обладающих способностью к быстрым активным передвижениям. Подразделяются на фито- и зоопланктон (мелкие ракообразные, простейшие – фораминиферы, радиолярии; медузы, крылоногие моллюски). Фитопланктон – диатомовые и зеленые водоросли.

Нейстон – совокупность организмов, населяющих поверхностную пленку воды на границе с воздушной средой. Это личинки дясятиногих, усоногих, веслоногих ракообразных, брюхоногих и двустворчатых моллюсков, иглокожих, рыб. Проходя личиночную стадию, они покидают поверхностный слой, служивший им и убежищем, перемещаются жить на дно или пелагиаль.

Плейстон – это совокупность организмов, часть тела которых находится над поверхностью воды, а другая в воде - ряска, сифонофоры.

Бентос (глубина)- совокупность организмов, обитающих на дне водоемов. Подразделяется на фитобентос и зообентос. Фитобентос - водоросли – диатомовые, зеленые, бурые, красные и бактерии; у побережий цветковые растения – зостера, руппия. Зообентос – фораминиферы, губки, кишечнополостные, черви, моллюски, рыбы.

В жизни водных организмов большую роль играют вертикальное перемещение воды, плотность, температурный, световой, солевой, газовый (содержание кислорода и углекислого газа) режимы, концентрация водородных ионов (рН).

Температурный режим : Отличается в воде, во-первых, меньшим притоком тепла, во-вторых большей стабильностью, чем на суше. Часть тепловой энергии, поступающей на поверхность воды, отражается, часть расходуется на испарение. Испарение воды с поверхности водоемов, при котором затрачивается около 2263.8 Дж/г, препятствует перегреванию нижних слоев, а образование льда, при котором выделяется теплота плавления (333.48 Дж/г), замедляет их охлаждение. Изменение температуры в текущих водах следует за ее изменениями в окружающем воздухе, отличаясь меньшей амплитудой.

В озерах и прудах умеренных широт термический режим определяется хорошо известным физическим явлением – вода обладает максимальной плотностью при 4 о С. Вода в них четко делится на три слоя:

1. эпилимнион - верхний слой температура которого испытывает резкие сезонные колебания;

2. металимнион – переходный, слой температурного скачка, отмечается резкий перепад температур;

3. гиполимнион – глубоководный слой, доходящий до самого дна, где температура в течение года изменяется незначительно.

Летом наиболее теплые слои воды располагаются у поверхности, а холодные – у дна. Данный вид послойного распределения температур в водоеме называется прямая стратификация. Зимой, с понижением температуры, происходит обратная стратификация : поверхностный слой имеет температуру, близкую к 0 С, на дне температура около 4 С, что соответствует максимальной ее плотности. Таким образом, с глубиной температура повышается. Это явление, называемое температурной дихотомией, наблюдается в большинстве озер умеренной зоны летом и зимой. В результате температурной дихотомии нарушается вертикальная циркуляция – наступает период временного застоя – стагнация .

Веснойповерхностная вода вследствие нагревания до 4С становится более плотной и погружается вглубь, а на ее место с глубины поднимается более теплая вода. В результате такой вертикальной циркуляции в водоеме наступает гомотермия, т.е. на какое-то время температура всей водной массы выравнивается. С дальнейшим повышением температуры верхние слои становятся все менее плотными и уже не опускаются вниз – летняя стагнация. Осенью же поверхностный слой охлаждается становится более плотным и опускается вглубь, вытесняя на поверхность более теплую воду. Это происходит до наступления осенней гомотермии. При охлаждении поверхностных вод ниже 4С они становятся менее плотными и опять остаются на поверхности. В результате прекращается циркуляция воды и наступает зимняя стагнация.

Воде свойственна значительная плотность (в 800 раз) превосходит воздушную среду) и вязкость. В среднем в водной толще на каждые 10 м глубины давление возрастает на 1 атм. На растениях эти особенности сказываются в том, что у них очень слабо или вовсе не развивается механическая ткань, поэтому стебли их очень эластичны и легко изгибаются. Большинству водных растений присуща плавучесть и способность находиться в толще воды во взвешенном состоянии, у многих водных животных покровы смазываются слизью, уменьшающей трение при передвижении, а тело обретает обтекаемую форму. Многие обитатели относительно стенобатны и приурочены к определенным глубинам.

Прозрачность и световой режим. Особенно это сказывается на распространении растений: в мутных водоемах они обитают только в поверхностном слое. Световой режим обусловливается также закономерным убыванием света с глубиной из-за того, что вода поглощает солнечный свет. При этом лучи с разной длиной волны поглощаются неодинаково: быстрее всего красные, тогда как сине-зеленые проникают на значительные глубины. Цвет среды при этом меняется, постепенно переходя от зеленоватого до зеленого, голубого, синего, сине-фиолетового, сменяемого постоянным мраком. Соответственно этому с глубиной зеленые водоросли сменяются бурыми и красными, пигменты которых приспособлены к улавливанию солнечных лучей с разной длиной волны. С глубиной также закономерно меняется окраска животных. В поверхностных слоях воды обитают ярко и разнообразно окрашенные животные, тогда как глубоководные виды лишены пигментов. В сумречной обитают животные, окрашенные в цвета с красноватым оттенком, что помогает им скрываться от врагов, так как красный цвет в сине-фиолетовых лучах воспринимается как черный.



Поглощение света в воде тем сильнее, чем меньше ее прозрачность. Прозрачность характеризуется предельной глубиной, где еще виден специально опускаемый диск Секки (белый диск диаметром 20 см). Отсюда и границы зон фотосинтеза сильно колеблются в разных водоемах. В самых чистых водах зона фотосинтеза достигает глубины 200 м.

Соленость воды. Вода - прекрасный растворитель многих минеральных соединений. В результате природным водоемам свойствен определенный химический состав. Наибольшее значение имеют сульфаты, карбонаты, хлориды. Количество растворенных солей на 1 л воды в пресных водоемах не превышает 0,5 г, в морях и океанах - 35 г. Пресноводные растения и животные обитают в гипотонической среде, т.е. среде, в которой концентрация растворенных веществ ниже, чем в жидкостях тела и тканей. Из-за разницы в осмотическом давлении вне и внутри тела в организм постоянно проникает вода, и гидробионты пресных вод вынуждены интенсивно удалять ее. В связи с этим у них хорошо выражены процессы осморегуляции. У простейших это достигается работой выделительных вакуолей, у многоклеточных – удалением воды через выделительную систему. Типично морские и типично пресноводные видыне переносят значительных изменений солености воды -стеногалинные организмы. Эвригаллинные - пресноводный судак, лещ, щука, из морских - семейство кефалевых.

Газовый режим Основными газами в водной среде – кислород и углекислый газ.

Кислород - важнейший экологический фактор. Он поступает в воду из воздуха и выделяется растениями при фотосинтезе. Содержание его в воде обратно пропорционально температуре- с понижением температуры растворимость кислорода в воде (как и других газов) повышается. В слоях, сильно заселенных животными и бактериями, может создаваться дефицит кислорода из-за усиленного его потребления. Так, в мировом океане богатые жизнью глубины от 50 до 1000 м характеризуются резким ухудшением аэрации. Она в 7-10 раз ниже, чем в поверхностных водах населенных фитопланктоном. Около дна водоемов условия могут быть близкими к анаэробным.

Углекислый газ - растворяется в воде примерно в 35 раз лучше, чем кислород и концентрация его в воде в 700 раз больше, чем в атмосфере. Обеспечивает фотосинтез водных растений и участвует в формировании известковых скелетных образований беспозвоночных животных.

Концентрация водородных ионов (рН) – пресноводные бассейны с рН = 3,7-4,7 считаются кислыми, 6,95- 7,3 – нейтральными, с рН 7,8 – щелочными. В пресных водоемах рН испытывает даже суточные колебания. Морская вода более щелочная и ее рН значительно меньше изменяется, чем в пресной. С глубиной рН уменьшается. Концентрация водородных ионов играет большую роль в распределении гидробионтов.

Наземно-воздушная среда обитания

Особенностью наземно-воздушной среды жизни является то, что организмы, обитающие здесь, окружены газообразной средой, характеризующейся низкими влажностью, плотностью и давлением, высоким содержанием кислорода. Как правило, животные в этой среде передвигаются по почве (твердый субстрат), а растения укореняются в ней.

В наземно-воздушной среде действующие экологические факторы имеют ряд характерных особенностей: более высокая интенсивность света в сравнении с другими средами, значительные колебания температуры, изменение влажности в зависимости от географического положения, сезона и времени суток. Воздействие факторов, перечисленных выше, неразрывно связано с движением воздушных масс – ветра.

В процессе эволюции у живых организмов наземно-воздушной среды выработались характерные анатомо-морфологические, физиологические адаптации.

Рассмотрим особенности воздействия основных экологических факторов на растения и животных в наземно-воздушной среде.

Воздух. Воздух как экологический фактор характеризуется постоянством состава – кислорода в нем обычно около 21%, углекислого газа 0,03 %.

Низкая плотность воздуха определяет его малую подъемную силу и незначительную опорность. Все обитатели воздушной среды тесно связаны с поверхностью земли, служащей им для прикрепления и опоры. Плотность воздушной среды не оказывает высокого сопротивления организмам при их передвижении по поверхности земли, однако затрудняет перемещение по вертикали. Для большинства организмов пребывание в воздухе связано только с расселением или поиском добычи.

Малая подъемная сила воздуха определяет предельную массу и размеры наземных организмов. Самые крупные животные, обитающие на поверхности земли, меньше, чем гиганты водной среды. Крупные млекопитающиеся (размером и массой современного кита) не могли бы жить на суше, так как были бы раздавлены собственной тяжестью.

Малая плотность воздуха создает незначительную сопротивляемость передвижению. Экологические выгоды этого свойства воздушной среды использовали многие наземные животные в ходе эволюции, приобретя способность к полету. К активному полету способны 75 % видов всех наземных животных, преимущественно насекомые и птицы, но встречаются летуны и среди млекопитающих и рептилий.

Благодаря подвижности воздуха, существующим в нижних слоях атмосферы вертикальным и горизонтальным передвижениям воздушных масс возможен пассивный полет ряда организмов. У многих видов развита анемохория – расселение с помощью воздушных потоков. Анемохория характерна для спор, семян и плодов растений, цист простейших, мелких насекомых, пауков и т.д. Пассивно переносимые потоками воздуха организмы получили в совокупности название аэропланктона по аналогии с планктонными обитателями водной среды.

Основная же экологическая роль горизонтальных воздушных передвижений (ветров) – косвенная в усилении и ослаблении воздействия на наземные организмы таких важных экологических факторов, как температура и влажность. Ветры усиливают отдачу животными и растениями влаги и тепла.

Газовый состав воздуха в приземном слое воздухе довольно однороден (кислород – 20,9 %, азот – 78,1 %, инертные газы – 1 %, углекислый газ – 0,03 % по объему) благодаря его высокой диффузионной способности и постоянному перемешиванию конвекционным и ветровым потоками. Однако различные примеси газообразных, капельно-жидких и твердых (пылевых) частиц, попадающих в атмосферу из локальных источников, могут иметь существенное экологическое значение.

Высокое содержание кислорода способствовало повышению обмена веществ у наземных организмов, и на базе высокой эффективности окислительных процессов возникла гомойотермия животных. Кислород из-за постоянно высокого его содержания в воздухе не является фактором, лимитирующим жизнь в наземной среде. Лишь местами, в специфических условиях, создается временный его дефецит, например в скоплениях разлагающихся растительных остатков, запасах зерна, муки и т.д.

Эдафические факторы. Свойства грунта и рельеф местности также влияют на условия жизни наземных организмов, в первую очередь растений. Свойства земной поверхности, оказывающие экологическое воздействие на ее обитателей, объединяют названием эдафические факторы среды.

Характер корневой системы растений зависит от гидротермического режима, аэрации, сложения, состав и структуры почвы. Например, корневые системы древесных пород (березы, лиственницы) в районах с многолетней мерзлотой располагаются на небольшой глубине и распростерты вширь. Там, где нет многолетней мерзлоты, корневые системы этих же растений менее распростерты и проникают вглубь. У многих степных растений корни могут доставать воду с большой глубины, в то же время у них много и поверхностных корней в гумусированном горизонте почвы, откуда растения поглощают элементы минерального питания.

Рельеф местности и характер грунта влияют на специфику передвижения животных. Например, копытные, страусы, дрофы, живущие на открытых пространствах, нуждаются в твердом грунте для усиления отталкивания при быстром беге. У ящериц, обитающих на сыпучих песках, пальцы окаймлены бахромкой из роговых чешуй, которая увеличивает поверхность опоры. Для наземных обитателей, роющих норы, плотные грунты неблагоприятны. Характер почвы в ряде случаев влияет на распределение наземных животных, роющих норы, зарывающих в грунт для спасения от жары или хищников либо откладывающих в почву яйца и т.д.

Погодные и климатические особенности. Условия жизни в наземно-воздушной среде осложняются, кроме того, погодными изменениями. Погода – это непрерывно меняющееся состояние атмосферы у земной поверхности, до высоты примерно 20 км (граница тропосферы). Изменчивость погоды проявляется в постоянном варьировании сочетании таких факторов среды, как температура и влажность воздуха, облачность, осадки, сила и направление ветра и т.п. Для погодных изменений наряду с закономерным чередованием их в годовом цикле характерны непериодические колебания, что существенно усложняет условия существования наземных организмов. На жизнь водных обитателей погода влияет в значительной меньшей степени и лишь на население поверхностных слоев.

Климат местности. Многолетний режим погоды характеризует климат местности. В понятие климата входят не только средние значения метеорологических явлений, но также их годовой и суточный ход, отклонения от него и их повторяемость. Климат определяется географическими условиями района.

Зональное разнообразие климатов осложняется действием муссонных ветров, распределением циклонов и антициклонов, влиянием горных массивов на движение воздушных масс, степенью удаления от океана и многими другими местными факторами.

Для большинства наземных организмов, особенно мелких, важен не столько климат района, сколько условия их непосредственного местообитания. Очень часто местные элементы среды (рельеф, растительность и т.п.) так изменяют в конкретном участке режим температуры, влажности, света, движения воздуха, что он значительно отличается от климатических условий местности. Такие локальные модификации климата, складывающиеся в приземном слое воздуха, называют микроклиматом. В каждой зоне микроклиматы очень разнообразны. Можно выделить микроклиматы сколь угодно малых участков. Например особый режим создается в венчиках цветков, что используют обитающие там обитатели. Особый устойчивый микроклимат возникает в норах, гнездах, дуплах, пещерах и др. закрытых местах.

Осадки. Помимо водообеспечения и создания запасов влаги, они могут играть и другую экологическую роль. Так, сильные ливневые дожди или град оказывают иногда механическое воздействие на растения или животных.

Особенно многообразна экологическая роль снегового покрова. Суточные колебания температур проникают в толщу снега лишь до 25 см, глубже температура почти не изменяется. При морозах в – 20-30 С под слоем снега в 30-40 см температура лишь ненамного ниже нуля. Глубокий снежный покров защищает почки возобновления, предохраняет от вымерзания зеленые части растений; многие виды уходят под снег, не сбрасывая листвы, например ожика волосистая, вероника лекарственная и др.

Мелкие наземные зверки ведут и зимой активный образ жизни, прокладывая под снегом и в его толще целые галереи ходов. Для ряда видов, питающихся подснежной растительностью, характерно даже зимнее размножение, которое отмечено, например, у леммингов, лесной и желтогорлой мыши, ряда полевок, водяной крысы и др. Тетеревиные птицы – рябчики, тетерева, тундряные куропатки – зарываются в снег на ночевку.

Крупным животным зимний снеговой покров мешает добывать корм. Многие копытные (северные олени, кабаны, овцебыки) питаются зимой исключительно подснежной растительностью, и глубокий снежный покров, а особенно твердая корка на его поверхности, возникающая в гололед, обрекают их на бескормицу. Глубина снежного покрова может ограничивать географическое распространение видов. Например, настоящие олени не проникают на север в те районы, где толща снега зимой более 40-50 см.

Световой режим. Количество достигающей поверхности Земли радиации обусловлено географической широтой местности, продолжительностью дня, прозрачностью атмосферы и углом падения солнечных лучей. При разных погодных условиях к поверхности Земли доходит 42-70% солнечной постоянной. Освещенность на поверхности Земли варьирует в широких пределах. Все зависит от высоты стояния Солнца над горизонтом или угла падения солнечных лучей, длины дня и условий погоды, прозрачности атмосферы. Интенсивность света также колеблется в зависимости от времени года и времени суток. В отдельных районах Земли неравноценно и качество света, например, соотношение длинноволновых (красных) и коротковолновых (синих и ультрафиолетовых) лучей. Коротковолновые лучи, как известно, больше, чем длинноволновые, поглощаются и рассеиваются атмосферой.

Общая характеристика. В ходе эволюции наземно-воздушная среда была освоена значительно позднее, чем водная. Жизнь на суше потребовала таких приспособлений, которые стали возможными только при сравнительно высоком уровне организации как растений, так и животных. Особенностью наземно-воздушной среды жизни является то, что организмы, которые здесь обитают, окружены воздухом и газообразной средой, характеризующейся низкими влажностью, плотностью и давлением, высоким содержанием кислорода. Как правило, животные в этой среде передвигаются по почве (твердый субстрат), а растения укореняются в ней.

В наземно-воздушной среде действующие экологические факторы имеют ряд характерных особенностей: более высокая интенсивность света в сравнении с другими средами, значительные колебания температуры, изменение влажности в зависимости от географического положения, сезона и времени суток (табл. 3).

Таблица 3

Условия обитания организмов воздушной и водной среды (по Д.Ф. Мордухай-Болтовскому, 1974)

Условия обитания

Значение условий для организмов

воздушной среды

водной среды

Влажность

Очень важное (часто в дефиците)

Не имеет (всегда в избытке)

Плотность среды

Незначительное (за исключением почвы)

Большое по сравнению с ее ролью для обитателей воздушной среды

Давление

Почти не имеет

Большое (может достигать 1000 атмосфер)

Температура

Существенное (колеблется в очень больших пределах (от -80 до +100 °С и более)

Меньшее по сравнению со значением для обитателей воздушной среды (колеблется гораздо меньше, обычно от -2 до +40°С)

Кислород

Несущественное (большей частью в избытке)

Существенное (часто в дефиците)

Взвешенные вещества

Неважное; не используются в пищу (главным образом минеральные)

Важное (источник пищи, особенно органические вещества)

Растворенные вещества в окружающей среде

В некоторой степени (имеют значение только в почвенных растворах)

Важное (в определенном количестве необходимы)

Воздействие вышеуказанных факторов неразрывно связано с движением воздушных масс -- ветра. В процессе эволюции у живых организмов наземно-воздушной среды выработались характерные анатомо-морфологические, физиологические, поведенческие и другие адаптации. Например, появились органы, которые обеспечивают непосредственное усвоение атмосферного кислорода в процессе дыхания (легкие и трахеи животных, устьица растений). Получили сильное развитие скелетные образования (скелет животных, механические и опорные ткани растений), которые поддерживают тело в условиях незначительной плотности среды. Выработались приспособления для защиты от неблагоприятных факторов, таких, как периодичность и ритмика жизненных циклов, сложное строение покровов, механизмы терморегуляции и др. Сформировалась тесная связь с почвой (конечности животных, корни растений), выработалась подвижность животных в поисках пищи, появились переносимые воздушными течениями семена, плоды и пыльца растений, летающие животные.

Рассмотрим особенности воздействия основных экологических факторов на растения и животных в наземно-воздушной среде жизни.

Низкая плотность воздуха определяет его малую подъемную силу и незначительную спорность. Все обитатели воздушной среды тесно связаны с поверхностью земли, служащей им для прикрепления и опоры. Плотность воздушной среды не оказывает высокого сопротивления организма при их передвижении по поверхности земли, однако затрудняет перемещение по вертикали. Для большинства организмов пребывание в воздухе связано только с расселением или поиском добычи.

Малая подъемная сила воздуха определяет предельную массу и размеры наземных организмов. Самые крупные животные на поверхности земли меньше, чем гиганты водной среды. Крупные млекопитающие (размером и массой современного кита) не могли бы жить на суше, так как были бы раздавлены собственной тяжестью. Гигантские ящеры мезозоя вели полуводный образ жизни. Другой пример: высокие прямостоячие растения секвойи (Sequoja sempervirens), достигающие 100 м, обладают мощной опорной древесиной, в то время как в слоевищах гигантских бурых водорослей Macrocystis, вырастающих до 50 м, механические элементы лишь очень слабо обособлены в сердцевинной части таллома.

Малая плотность воздуха создает незначительную сопротивляемость передвижению. Экологические выгоды этого свойства воздушной среды использовали многие наземные животные в ходе эволюции, приобретя способность к полету. 75% всех видов наземных животных способны к активному полету. Это большей частью насекомые и птицы, но встречаются и млекопитающие, и рептилии. Наземные животные летают главным образом с помощью мускульных усилий. Некоторые животные могут и планировать за счет воздушных течений.

Вследствие подвижности воздуха, которое существует в нижних слоях атмосферы, вертикальное и горизонтальное передвижение воздушных масс, возможен пассивный полет отдельных видов организмов, развита анемохория -- расселение с помощью воздушных потоков. Организмы, пассивно переносимые потоками воздуха, получили в совокупности название аэропланктона, по аналогии с планктонными обитателями водной среды. Для пассивного полета по Н.М. Черновой, А.М. Быловой (1988) у организмов имеются специальные адаптации -- мелкие размеры тела, увеличение его площади за счет выростов, сильного расчленения, большой относительной поверхности крыльев, использование паутины и др.

Анемохорные семена и плоды растений обладают также очень мелкими размерами (например, семена кипрея) или разнообразными крыловидными (клен Acer pseudoplatanum) и парашюто-видными (одуванчик Taraxacum officinale) придатками

Ветроопыляемые растения обладают целым рядом приспособлений, которые улучшают аэродинамические свойства пыльцы. Цветочные покровы у них обычно редуцированы и пыльники ничем не защищены от ветра.

В расселении растений, животных и микроорганизмов главную роль играют вертикальные конвенционные потоки воздуха и слабые ветры. Бури, ураганы оказывают также существенное экологическое воздействие на наземные организмы. Довольно часто сильные ветры, особенно дующие в одм направлении, изгибают ветви деревьев, стволы в подветренную сторону и служат причиной образования флагообразныъ форм кроны.

В районах, где постоянно дует сильный ветер, как правило, беден видовой состав мелких летающих животных, так как они не способны сопротивляться мощным воздушным потокам. Так, медоносная пчела летит только при силе ветра до 7 - 8 м/с, а тли - при очень слабом ветре, не превышающем 2,2 м/с. У животныъ этих мест развиваются плотные покровы, предохранчяющие тело от охлаждения и потерь влаги. На океанических островах с постоянными сильными ветрами преобладают птицы и особенно насекомые, утратившие способность к полету, у них отсутствуют крылья, ткак как тех, кто способен подняться в воздух, сносит ветром в море и они погибают.

Ветер вызывает изменение интенсивности транспирации у растений и особенно сильно проявляется при суховеях, иссушающих воздух, может приводить к гибели растений. Основная же экологическая роль горизонтальных воздушных передвижений (ветров) - косвенная и заключается в усилении или ослаблении воздействия на наземные организмы таких важных экологических факторов, как температура и влажность. Ветры усиливают отдачу животными и растениями влаги и тепла.

При ветре легче переносится жара и тяжелее - морозы, быстрее наступает иссушение и охлаждение организмов.

Наземные организмы существу.т в условиях относительно низкого давления, которое обусловлено малой плотностью воздуха. В целом наземные организмы более стенобатны, чем водные, потому что обычные колебания давления в окружающей их среде составляют доли атмосферы, и для поднимающихся на большую высоту, например, птиц, не превышают 1/3 нормального.

Газовый состав воздуха , как уже было рассмотрено ранее, в приземном слое атмосферы довольно одноролден (кислород - 20,9%, азот -- 78,1%, м.гртные газы -- 1%, углекислый газ -- 0,03% по объему) благодаря высокой его диффузионной способности и постоянному перемешиванию конвекционным и ветровым потоками. Вместе с тем различные примеси газообразных, капельно-жидких, пылевых (твердых) частиц, попадающих в атмосферу из локальных источников, нередко имеют существенное экологическое значение.

Кислород из-за постоянно высокого его содержания в воздухе не является фактором, лимитирующим жизнь в наземной среде. Высокое содержание кислорода способствовало повышению обмена веществ у наземных организмов, и на базе высокой эффективности окислительных процессов возникла гомойотермия животных. Только местами, в специфических условиях, создается временный дефицит кислорода, например в разлагающихся растительных остатках, запасах зерна, муки и т.д.

В отдельных участках приземного слоя воздуха содержание углекислого газа может изменяться в довольно значительных пределах. Так, при отсутствии ветра в крупных промышленных центрах, городах концентрация его может возрастать в десятки раз.

Закономерны суточные изменения содержания угаекислоты в приземных слоях, обусловленные ритмом фотосинтеза растений (рис. 17).

Рис. 17. Суточные изменения вертикального профиля концентрации СО 2 в воздухе леса (из В. Лархера, 1978)

На примере суточных изменений вертикального профиля концентрации СО 2 в воздухе леса показано, что днем на уровне крон деревьев углекислота расходуется на фотосинтез, а при отсутствии ветра здесь образуется зона, бедная СО 2 (305 ч на млн), в которую поступает СО, из атмосферы и почвы (дыхание почвы). Ночью устанавливается стабильное расслоение воздуха с повышенной концентрацией СО 2 в припочвенном слое. Сезонные колебания углекислого газа связаны с изменениями интенсивности дыхания живых организмов, большей частью микроорганизмов почвы.

В высоких концентрациях углекислый газ токсичен, но в природе такие концентрации встречаются редко. Низкое же содержание СО 2 тормозит процесс фотосинтеза. Для повышения скорости фотосинтеза в практике оранжерейного и тепличного хозяйства (в условиях закрытого грунта) нередко увеличивают искусственным путем концентрацию углекислого газа.

Для большинства обитателей наземной среды азот воздуха представляет инертный газ, но такие микроорганизмы, как клубеньковые бактерии, азотобактерии, клостридии, обладают способностью связывать его и вовлекать в биологический круговорот.

Основной современный источник физического и химического загрязнения атмосферы является антропогенным: предприятия промышленности и транспорта, эрозия почв и т. д. Так, сернистый газ ядовит для растений в концентрациях от одной пятидесятитысячнои до одной миллионной от объема воздуха. Лишайники погибают уже при следах в окружающей среде сернистого газа. Поэтому особо чувствительные растения к SO 2 нередко используются в качестве индикаторов его содержания в воздухе. Чувствительны к задымлению обыкновенная ель и сосна, клен, липа, береза.

Световой режим. Количество достигающей поверхности Земли радиации обусловлено географической широтой местности, продолжительностью дня, прозрачностью атмосферы и углом падения солнечных лучей. При разных погодных условиях к поверхности Земли доходит 42 -- 70% солнечной постоянной. Проходя через атмосферу, солнечная радиация претерпевает ряд изменений не только в количественном отношении, но и по составу. Коротковолновая радиация поглощается озоновым экраном и кислородом воздуха. Инфракрасные лучи поглощаются в атмосфере водяными парами и диоксидом углерода. Остальная часть в виде прямой или рассеянной радиации достигает поверхности Земли.

Совокупность прямой и рассеянной солнечной радиации составляет от 7 до 7„ суммарной радиации, тогда как в облачные дни рассеянная радиация составляет 100%. В высоких широтах преобладает рассеянная радиация, тропиках -- прямая. Рассеянная радиация содержит в полдень желто-красных лучей до 80%, прямая -- от 30 до 40%. В ясные солнечные дни солнечная радиация, достигающая поверхности Земли, на 45% состоит из видимого света (380 -- 720 нм) и на 45% из инфракрасного излучения. Только 10% приходится на ультрафиолетовое излучение. На радиационный режим значительное влияние оказывает запыленность атмосферы. Вследствие ее загрязненности в некоторых городах освещенность может составлять 15% и менее освещенности за городом.

Освещенность на поверхности Земли варьирует в широких пределах. Все зависит от высоты стояния Солнца над горизонтом или угла падения солнечных лучей, длины дня и условий погоды, прозрачности атмосферы (рис. 18).


Рис. 18. Распределение солнечной радиации в зависимости от высоты Солнца над горизонтом (А 1 -- высокое, А 2 -- низкое)

В зависимости от времени года и времени суток также колеблется интенсивность света. В отдельных районах Земли неравноценно и качество света, например, соотношение длинноволновых (красных) и коротковолновых (синих и ультрафиолетовых) лучей. Коротковолновые лучи, как известно, больше, чем длинноволновые, поглощаются и рассеиваются атмосферой. В горных местностях поэтому всегда больше коротковолновой солнечной радиации.

Деревья, кустарники, посевы растений затеняют местность, создают особый микроклимат, ослабляя радиацию (рис. 19).


Рис. 19.

А -- в редком сосновом лесу; Б -- в посевах кукурузы Из поступающей фотосинтетически активной радиации 6--12% отражается (R) от поверхности насаждения

Таким образом, в разных местообитаниях различаются не только интенсивность радиации, но и ее спектральный состав, продолжительность освещения растений, пространственное и временное распределение света разной интенсивности и т. д. Соответственно разнообразны и приспособления организмов к жизни в наземной среде при том или ином световом режиме. Как уже нами было отмечено ранее, по отношению к свету различают три основных группы растений: светолюбивые (гелиофиты), тенелюбивые (сциофиты) и теневыносливые. Светолюбивые и тенелюбивые растения различаются положением экологического оптимума.

У светолюбивых растений он находится в области полного солнечного освещения. Сильное затенение действует на них угнетающе. Это растения открытых участков суши или хорошо освещенных степных и луговых трав (верхний ярус травостоя), наскальные лишайники, ранневесенние травянистые растения листопадных лесов, большинство культурных растений открытого грунта и сорняков и т. д. Тенелюбивые растения имеют оптимум в области слабой освещенности и не выносят сильного света. Это главным образом нижние затененные яруса сложных растительных сообществ, где затенение результат «перехвата» света более высокорослыми растениям и сообитателями. Сюда относят и многие комнатные и оранжерейные растения. Большей частью это выходцы из травянистого покрова или флоры эпифитов тропических лесов.

Экологическая кривая отношения к свету и у теневыносливых несколько асимметрична, так как они лучше растут и развиваются при полной освещенности, но хорошо адаптируются и к слабому свету. Это распространенная и очень пластичная группа растений в наземной среде.

У растений наземно-воздушной среды выработались приспособления к различным условиям светового режима: анатомо-морфологические, физиологические и др.

Наглядным примером анатомо-морфологических приспособлений является изменение внешнего облика в разных световых условиях, например неодинаковая величина листовых пластинок у растений, родственных по систематическому положению, но живущих при разном освещении (луговой колокольчик -- Campanula patula и лесной -- С. trachelium, фиалка полевая -- Viola arvensis, растущая на полях, лугах, опушках, и лесные фиалки -- V. mirabilis), рис. 20.

Рис. 20. Распределение размеров листьев в зависимости от условий обитания растений: от влажных к сухим и от затененных к солнечным

Примечание. Заштрихованный участок соответствует условиям, преобладающим в природе

В условиях избытка и недостатка света расположение листовых пластинок у растений в пространстве значительно варьирует. У растений-гелиофитов листья ориентированы на уменьшение прихода радиации в самые «опасные» дневные часы. Листовые пластинки расположены вертикально или под большим углом к горизонтальной плоскости, поэтому днем листья получают большей частью скользящие лучи (рис. 21).

Особенно это ярко выражено у многих степных растений. Интересна адаптация к ослаблению полученной радиации у так называемых «компасных» растений (дикий латук -- Lactuca serriola и др.). Листья у дикого латука расположены в одной плоскости, ориентированной с севера на юг, и в полдень приход радиации к листовой поверхности минимальный.

У теневыносливых же растений листья расположены так, чтобы получить максимальное количество падающей радиации.


Рис. 21.

1,2 -- листья с разными углами наклона; S 1 , S 2 -- поступление к ним прямой радиации; S общ -- ее суммарное поступление к растению

Нередко теневыносливые растения способны к защитным движениям: изменению положения листовых пластинок при попадании на них сильного света. Участки травяного покрова со сложенными листьями кислицы сравнительно точно совпадают с расположением крупных солнечных бликов. Ряд адаптивных черт можно отметить в строении листа как основного приемника солнечной радиации. Например, у многих гелиофитов поверхность листа способствует отражению солнечных лучей (блестящая -- у лавра, покрытая светлым волосковым налетом -- у кактуса, молочаев) или ослаблению их действия (толстая кутикула, густое опушение). Для внутреннего строения листа характерно мощное развитие палисадной ткани, наличие большого количества мелких и светлых хлоропластов (рис. 22).

Одна из защитных реакций хлоропластов на избыточный свет является их способность к изменению ориентировки и к перемещению в клетке, ярко выраженная у световых растений.

На ярком свету хлоропласты занимают в клетке постенное положение и становятся «ребром» к направлению лучей. При слабом освещении они распределяются в клетке диффузно или скапливаются в ее нижней части.

Рис. 22.

1 -- тисе; 2-- лиственница; 3 -- копытень; 4 -- чистяк весенний (По Т. К. Горышиной, Е. Г. Пружиной, 1978)

Физиологические адаптации растений к световым условиям наземно-воздушной среды охватывают различные жизненные функции. Установлено, что у светолюбивых растений ростовые процессы более чутко реагируют на недостаток света по сравнению с теневыми. В результате наблюдается усиленное вытягивание стеблей, которое помогает растениям пробиться к свету, в верхние ярусы растительных сообществ.

Основные физиологические адаптации к свету лежат в сфере фотосинтеза. В общей форме изменение фотосинтеза в зависимости от интенсивности света выражается «световой кривой фотосинтеза». Экологическое значение имеют следующие ее параметры (рис. 23).

  • 1. Точке пересечения кривой с осью ординат (рис. 23, а) соответствует величина и направление газообмена растений в полной темноте: фотосинтез отсутствует, имеет место дыхание (не поглощение, а выделение СО 2), поэтому точка а лежит ниже оси абсцисс.
  • 2. Точка пересечения световой кривой с осью абсцисс (рис. 23, б) характеризует «компенсационный пункт», т. е. интенсивность света, при которой фотосинтез (поглощение СО 2) уравновешивает дыхание (выделение СО 2).
  • 3. Интенсивность фотосинтеза с увеличением света возрастает только до определенного предела, в дальнейшем остается постоянной -- световая кривая фотосинтеза выходит на «плато насыщения».

Рис. 23.

А -- общая схема; Б -- кривые для светолюбивых (1) и теневыносливых (2) растений

На рис. 23 область перегиба условно обозначена плавной кривой, перелому которой соответствует точка в. Проекция точки в на ось абсцисс (точка г) характеризует «насыщенную» интенсивность света, т. е. такую величину, выше которой свет уже не повышает интенсивность фотосинтеза. Проекция на ось ординат (точка д) соответствует наибольшей интенсивности фотосинтеза для данного вида в данной наземно-воздушной среде.

4. Важная характеристика световой кривой -- угол наклона (а) к абсциссе, которая отражает степень увеличения фотосинтеза при возрастании радиации (в области сравнительно низкой интенсивности света).

У растений отмечается сезонная динамика реакции на свет. Так, у осоки волосистой (Carex pilosa) ранней весной в лесу только что появившиеся листья имеют плато светового насыщения фотосинтеза за 20 -- 25 тыс. лк, при летнем затенении у этих же видов кривые зависимости фотосинтеза от света становятся соответственными параметрам «теневым», т. е. листья приобретают способность более эффективно использовать слабый свет, эти же листья после перезимовки под пологом безлистного весеннего леса снова обнаруживают «световые» черты фотосинтеза.

Своеобразной формой физиологической адаптации при резком недостатке света служит потеря растением способности к фотосинтезу, переход к гетеротрофному питанию готовыми органическими веществами. Иногда такой переход становился безвозвратным из-за потери растениями хлорофилла, например, орхидеи тенистых еловых лесов (Goodyera repens, Weottia nidus avis), вертляница (Monotropa hypopitys). Они живут за счет мертвых органических остатков, получаемых от древесных пород и других растений. Данный способ питания получил название сапрофитного, а растения называют сапрофитами.

Для подавляющего большинства наземных животных с дневной и ночной активностью зрение представляет один из способов ориентации, имеет важное значение для поисков добычи. Многие виды животных обладают и цветным видением. В связи с этим у животных, особенно жертв, возникли приспособительные особенности. К ним относятся защитная, маскирующая и предупреждающая окраска, покровительственное сходство, мимикрия и т. п. Возникновение ярко окрашенных цветков высших растений также связано с особенностями зрительного аппарата опылителей и в конечном счете со световым режимом среды.

Водный режим. Дефицит влаги -- одна из наиболее существенных особенностей наземно-воздушной среды жизни. Эволюция наземных организмов проходила путем приспособления к добыванию и сохранению влаги. Режимы влажности среды на суше разнообразны -- от полного и постоянного насыщения воздуха водяными парами, где в год выпадает несколько тысяч миллиметров осадков (области экваториального и муссонно-тропического климата) до практически полного их отсутствия в сухом воздухе пустынь. Так, в тропических пустынях среднегодовое количество осадков меньше 100 мм в год, и при этом дожди выпадают не каждый год.

Годовое количество осадков не всегда дает возможность оценить водообеспеченность организмов, так как одно и то же их количество может характеризовать пустынный климат (в субтропиках) и очень влажный (в Арктике). Большую роль играет соотношение осадков и испаряемости (суммарного годового испарения со свободной водной поверхности), также неодинаковый в разных районах земного шара. Области, где эта величина превышает годовую сумму осадков, называют аридными (сухими, засушливыми). Здесь, например, растения испытывают недостаток влаги в течение большей части вегетационного периода. Области, в которых растения обеспечены влагой, называют гумидными, или влажными. Нередко выделяют и переходные зоны -- полуаридные (семиаридные).

Зависимость растительности от среднегодового количества осадков и температуры показана на рис. 24.


Рис. 24.

1 -- тропический лес; 2 -- листопадный лес; 3 -- степь; 4 -- пустыня; 5 -- хвойный лес; 6 -- арктическая и горная тундра

Водообеспечение наземных организмов зависит от режима выпадения осадков, наличия водоемов, запасов почвенной влаги, близости грунтовых вод и т. д. Это способствовало развитию у наземных организмов множества адаптации к различным режимам водообеспечения.

На рис. 25 слева направо показаны переход от обитающих в воде низших водорослей с клетками без вакуолей к первичным пойкилогидрическим наземным водорослям, образование вакуолей у водных зеленых и харовых водорослей, переход от имеющих вакуоли таллофитов к гомойогидрическим кормофитам (распространение мхов -- гидрофитов еще ограничено местообитаниями с высокой влажностью воздуха, в сухих местообитаниях мхи становятся вторично пойкилогидрическими); среди папоротников и покрытосеменных (но не среди голосеменных) также имеются вторично пойкилогидрические формы. Большинство листостебельных растений гомойогидричны благодаря наличию у них кутикулярной защиты от транспирации и сильной вакуолизации их клеток. Следует отметить, что ксерофильность животных и растений свойственна только наземно-воздушной среде.


Рис. 2

Осадки (дождь, град, снег), кроме водообеспечения и создания запасов влаги, часто играют и другую экологическую роль. Например, при ливневых дождях почва не успевает впитывать влагу, вода сильными потоками быстро стекает и зачастую сносит в озера и реки слабо укоренившиеся растения, мелких животных и плодородный слой почвы. В поймах рек дожди могут вызывать паводки и оказывать таким образом неблагоприятное воздействие на обитающих здесь растения и животных. В затопляемых периодически местах образуются своеобразные пойменные фауна и флора.

Отрицательное действие на растения и животных оказывает и град. Посевы сельскохозяйственных культур на отдельных полях иногда бывают полностью уничтожены этим стихийным бедствием.

Многообразна экологическая роль снежного покрова. Для растений, почки возобновления которых находятся в почве или у ее поверхности, многих мелких животных снег играет роль теплоизо-лирующего покрова, защищая от низких зимних температур. При морозах выше -14°С под слоем снега 20 см температура почвы не опускается ниже 0,2°С. Глубокий снежный покров предохраняет от вымерзания зеленые части растений, такие, как вероника лекарственная, копытень и др., которые уходят под снег, не сбрасывая листвы. Мелкие наземные животные ведут зимой активный образ жизни, прокладывая под снегом и в его толще многочисленные галереи ходов. При наличии витаминизированного корма в снежные зимы там могут размножаться грызуны (лесная и желтогорлая мыши, ряд полевок, водяная крыса и др.). Под снегом в сильные морозы прячутся рябчики, куропатки, тетерева.

Крупным животным зимний снежный покров нередко мешает добывать корм, передвигаться, особенно при образовании на поверхности ледяной корки. Так, лоси (Alces alces) свободно преодолевают слой снега глубиной до 50 см, но более мелким животным это недоступно. Часто при многоснежных зимах наблюдается гибель косуль, диких кабанов.

Выпадение большого количества снега оказывает отрицательное влияние и на растения. Помимо механических повреждений в виде снеголомов или снеговалов мощный слой снега может приводить к выпреванию растений, а во время таяния снега, особенно в затяжную весну, к вымоканию растений.

Рис. 26.

От низких температур при сильных ветрах в малоснежные зимы страдают растения и животные. Так, в годы, когда снега выпадает мало, гибнут мышевидные грызуны, кроты и другие мелкие животные. Вместе с тем в широтах, где зимой выпадают осадки в виде снега, растения и животные исторически приспособились к жизни в снегу или на его поверхности, выработав различные анатомо-морфологические, физиологические, поведенческие и другие особенности. Например, у некоторых животных увеличивается к зиме опорная поверхность ног путем обрастания их жесткими волосами (рис. 26), перьями, роговыми щитками.

Другие мигрируют или впадают в неактивное состояние -- сон, спячка, диапауза. Ряд животных переходит на питание определенными видами кормов.

Рис. 5.27.

Белизна снежного покрова демаскирует темных животных. Сезонная смена окраски у белой и тундряной куропаток, горностая (рис. 27), зайца-беляка, ласки, песца, несомненно, связана с отбором на маскировку под цвет фона.

Осадки помимо непосредственного воздействия на организмы обусловливают ту или иную влажность воздуха, которая, как уже отмечалось, играет важную роль в жизни растений и животных, так как влияет на интенсивность их водного обмена. Испарение с поверхности тела животных и транспирация у растений идут тем интенсивнее, чем меньше воздух насыщен парами воды.

Поглощение надземными частями капельно-жидкой влаги, выпадающей в виде дождя, а также парообразной влаги из воздуха, у высших растений встречается у эпифитов тропических лесов, которые поглощают влагу всей поверхностью листьев и воздушных корней. Парообразную влагу из воздуха могут впитывать ветви некоторых кустарников и деревьев, например саксаулов -- Halaxylon persicum, H. aphyllum. У высших споровых и особенно низших растений поглощение влаги надземными частями является обычным способом водного питания (мхи, лишайники и др.). При недостатке влаги мхи, лишайники способны переживать длительное время в состоянии, близком к воздушно-сухому, впадая в анабиоз. Но стоит пройти дождю, как эти растения быстро впитывают влагу всеми наземными частями, приобретают мягкость, восстанавливают тургор, возобновляют процессы фотосинтеза и роста.

У растений сильно увлажненных наземных сред обитания нередко возникает необходимость удаления избытка влаги. Как правило, это бывает, когда почва хорошо прогрета и корни активно всасывают воду, а транспирация отсутствует (утром или при тумане, когда влажность воздуха 100%).

Избыточная влага удаляется путем гуттации -- это выделение воды через специальные выделительные клетки, расположенные по краю или на острие листа (рис. 28).

Рис. 28.

1 -- у злаков, 2 -- у земляники, 3 -- у тюльпана, 4 -- у молочая, 5 -- у беллевалии сарматской, 6 -- у клевера

К гуттации способны не только гигрофиты, но и многие мезофиты. Например, в украинских степях гуттация обнаружена более чем у половины всех видов растений. Многие луговые травы гутгируют так сильно, что увлажняют поверхность почвы. Так животные и растения приспосабливаются к сезонному распределению осадков, к их количеству и характеру. Этим определяется состав растений и животных, сроки протекания тех или иных фаз в цикле их развития.

На влажность оказывает влияние и конденсация водяных паров, часто происходящая в приземном слое воздуха при смене температуры. Выпадение росы проявляется при снижении температуры в вечерние часы. Нередко роса выпадает в таком количестве, что обильно смачивает растения, стекает в почву, увеличивает влажность воздуха и создает благоприятные условия для живых организмов, особенно когда других осадков выпадает мало. Осаждению росы способствуют растения. Охлаждаясь ночью, они конденсируют на себе водяные пары. На режим влажности значительно влияют туманы, густая облачность и другие природные явления.

При количественной характеристике среды обитания растений по водному фактору используют показатели, отражающие содержание, распределение влаги не только в воздухе, но и в почве. Почвенная вода, или влажность почвы, является одним из основных источников влаги для растений. Вода в почве находится в раздробленном состоянии, вкраплена в поры разных размеров и форм, имеет большую поверхность раздела с почвой, содержит ряд катионов и анионов. Отсюда почвенная влага неоднородна по физическим и химическим свойствам. Не вся вода, содержащаяся в почве, может быть использована растениями. По физическому состоянию, подвижности, доступности и значению для растений почвенная вода подразделяется на гравитационную, гигроскопическую и капиллярную.

В почве содержится и парообразная влага, занимающая все свободные от воды поры. Это почти всегда (кроме пустынных почв) насыщенный водяной пар. При понижении температуры ниже 0°С почвенная влага переходит в лед (вначале свободная вода, а при дальнейшем охлаждении -- и часть связанной).

Общее количество воды, которое может быть удержано почвой (его определяют, добавляя избыток воды и затем ожидая, пока она не перестанет выходить каплями), называется полевой влагоемкостью.

Следовательно, общее количество воды в почве не может характеризовать степень обеспеченности растений влагой. Для ее определения из общего количества воды необходимо вычесть коэффициент завядания. Однако физически доступная вода почвы физиологически не всегда доступна растениям из-за низкой температуры почвы, недостатка кислорода в почвенной воде и почвенном воздухе, кислотности почвы, высокой концентрации растворенных в почвенной воде минеральных солей. Несоответствие между всасыванием воды корнями и отдачей ее листьями приводит к завяданию растений. От количества физиологически доступной воды зависит развитие не только надземных частей, но и корневой системы растений. У растений, произрастающих на сухих почвах, корневая система, как правило, более разветвлена, более мощная, чем на влажных (рис. 29).


Рис. 29.

1 -- при большом количестве осадков; 2 -- при среднем; 3 -- при малом

Одним из источников почвенной влаги являются грунтовые воды. При низком их уровне капиллярная вода не достигает почвы и не влияет на ее водный режим. Увлажнение почвы за счет только атмосферных осадков вызывает сильные колебания ее влажности, что часто отрицательно влияет на растения. Вредно сказывается и слишком высокий уровень грунтовых вод, потому что это приводит к переувлажнению почвы, к обеднению кислородом и обогащению минеральными солями. Постоянное увлажнение почвы независимо от капризов погоды обеспечивает оптимальный уровень грунтовых вод.

Температурный режим. Отличительной чертой наземно-воздушной среды является большой размах температурных колебаний. В большинстве районов суши суточные и годовые амплитуды температур составляют десятки градусов. Особенно значительны изменения температуры воздуха в пустынях и приполярных континентальных районах. Например, сезонный размах температуры в пустынях Средней Азии 68--77°С, а суточный 25-- 38°С. В окрестностях Якутска среднеянварская температура воздуха-43°С, среднеиюльская +19°С, а годовой размах от-64 до +35°С. В Зауралье годовой ход температуры воздуха резкий и сочетается с большой изменчивостью температур зимних и весенних месяцев в разные годы. Самым холодным является январь, средняя температура воздуха составляет от -16 до -19°С, в отдельные годы понижается до -50°С, самый теплый месяц июль с температурой от 17,2 до 19,5°С. Максимальные плюсовые температуры 38--41°С.

Еще более значительны колебания температуры на поверхности почвы.

Наземные растения занимают зону, прилежащую к поверхности почвы, т. е. к «поверхности раздела», на которой совершается переход падающих лучей из одной среды в другую или по-другому -- из прозрачной в непрозрачную. На этой поверхности создается особый тепловой режим: днем -- сильное нагревание благодаря поглощению тепловых лучей, ночью -- сильное охлаждение вследствие лучеиспускания. Отсюда приземный слой воздуха испытывает наиболее резкие суточные колебания температур, которые в наибольшей степени выражены над оголенной почвой.

Тепловой режим местообитания растений, например, характеризуется на основе измерений температуры непосредственно в растительном покрове. В травянистых сообществах измерения делают внутри и на поверхности травостоя, а в лесах, где существует определенный вертикальный градиент температуры, -- в ряде точек на разных высотах.

Устойчивость к температурным изменениям среды у наземных организмов различна и зависит от конкретного местообитания, где протекает их жизнь. Так, наземные листостебельные растения в большинстве своем растут в широком температурном диапазоне, т. е. являются эвритермными. Их жизненный интервал в активном состоянии простирается, как правило, от 5 до 55°С, при этом между 5 и 40°С эти растения продуктивны. Растения континентальных областей, для которых характерен четкий суточный ход температуры, развиваются лучше всего, когда ночь на 10--15°С холоднее, чем день. Это относится к большинству растений умеренной зоны -- при разнице температур 5--10°С, а тропические растения при еще меньшей амплитуде -- около 3°С (рис. 30).

Рис. 30.

У пойкилотермных организмов с повышением температуры (Т) продолжительность развития (t) уменьшается все быстрее. Скорость развития Vt может быть выражена формулой Vt = 100/t.

Для достижения определенной стадии развития (например, у насекомых -- из яйца), т.е. окукливания, имагинальной стадии, всегда требуется определенная сумма температур. Произведение эффективной температуры (температуры выше нулевого пункта развития, т. е. Т--То) на длительность развития (t) дает специфическую для данного вида термалъную постоянную развития c=t(T--То). Используя данное уравнение, можно рассчитать время наступления определенной стадии развития, например, вредителя растения, на которой эффективна с ним борьба.

Растения как пойкилотермные организмы не имеют собственной стабильной температуры тела. Их температура определяется тепловым балансом, т. е. соотношением поглощения и отдачи энергии. Эти величины зависят от многих свойств как окружающей среды (размеры прихода радиации, температура окружающего воздуха и его движения), так и самих растений (окраска и другие оптические свойства растения, величина и расположение листьев и др.). Первостепенную роль играет охлаждающее действие транспирации, которая препятствует сильным перегревам растений в жарких местообитаниях. Как результат действия вышеуказанных причин, температура растений обычно отличается (нередко довольно значительно) от температуры окружающего воздуха. Здесь возможны три ситуации: температура растения выше температуры окружающего воздуха, ниже ее, равна или очень близка к ней. Превышение температуры растений над температурой воздуха встречается не только в сильно прогреваемых, но и в более холодных местообитаниях. Этому способствуют темная окраска или иные оптические свойства растений, которые увеличивают поглощение солнечной радиации, а также анатомо-морфологические особенности, способствующие снижению транспирации. Довольно заметно могут нагреваться арктические растения (рис. 31).

Другим примером является карликовая ива -- Salix arctica на Аляске, у которой днем листья теплее воздуха на 2--11 С и даже в ночные часы полярного «круглосуточного дня» -- на 1--3°С.

Ранневесенним эфемероидам, так называемым «подснежникам», нагревание листьев обеспечивает возможность достаточно интенсивного фотосинтеза в солнечные, но еще холодные весенние дни. Для холодных местообитаний или связанных с сезонными колебаниями температур повышение температуры растений экологически очень важно, так как физиологические процессы при этом получают независимость в известных пределах от окружающего теплового фона.


Рис. 31.

Справа -- интенсивность процессов жизнедеятельности в биосфере: 1 -- самый холодный слой воздуха; 2 -- верхняя граница прироста побегов; 3, 4, 5 -- зона наибольшей активности жизненных процессов и максимального накопления органического вещества; 6 -- уровень вечной мерзлоты и нижняя граница укоренения; 7 -- область наиболее низких температур почвы

Снижение температуры растений по сравнению с окружающим воздухом чаще всего отмечается в сильно освещенных и прогреваемых участках наземной сферы (пустыня, степь), где листовая поверхность растений сильно редуцирована, а усиленная транспирация способствует удалению избытка тепла и предотвращает перегрев. В общих чертах можно сказать, что в жарких местообитаниях температура надземных частей растений ниже, а в холодных -- выше температуры воздуха. Совпадение температуры растений с температурой окружающего воздуха встречается реже -- в условиях, исключающих сильный приток радиации и интенсивную транспирацию, например, у травянистых растений под пологом лесов, а на открытых участках -- в пасмурную погоду или при дожде.

В целом же наземные организмы по сравнению с водными отличаются большей эвритермностью.

В наземно-воздушной среде условия жизни осложняются существованием погодных изменений. Погода -- это непрерывно меняющееся состояние атмосферы у земной поверхности, примерно до высоты 20 км (граница тропосферы). Изменчивость погоды проявляется в постоянном варьировании сочетания таких факторов среды, как температура и влажность воздуха, облачность, осадки, сила и направление ветра и т. д. (рис. 32).


Рис. 32.

Для погодных изменений наряду с закономерным чередованием их в годовом цикле характерны непериодические колебания, существенно усложняющие условия существования наземных организмов. На рис. 33 на примере гусеницы яблоневой плодожорки Carpocapsa pomonella показана зависимость смертности от температуры и относительной влажности.

Рис. 33.

Из нее следует, что кривые равной смертности имеют концентрическую форму и что оптимальная зона ограничена относительной влажностью 55 и 95% и температурой 21 и 28°С.

Свет, температура и влажность воздуха обусловливают у растений обычно не максимальную, а среднюю степень открытия устьиц, так как совпадение всех условий, способствующих их открытию, случается редко.

Многолетний режим погоды характеризует климат местности. В понятие климата входят не только средние значения метеорологических явлений, но и их годовой и суточный ходы, отклонение от него, их повторяемость. Климат определяется географическими условиями района.

Основные климатические факторы -- это температура и влажность, измеряемые количеством осадков и насыщенностью воздуха водяными парами. Так, в удаленных от моря странах наблюдается постепенный переход от гумидного климата через семиаридную промежуточную зону со случайными или периодическими засушливыми периодами к аридной территории, для которой характерны продолжительная засуха, засоление почвы и воды (рис. 34).


Рис. 34.

Примечание: там, где кривая осадков пересекает восходящую линию испаряемости, расположена граница между гумидным (слева) и аридным (справа) климатом. Черным показан гумусовый горизонт, штриховкой -- иллювиальный горизонт

Каждое местообитание характеризуется определенным экологическим климатом, т. е. климатом приземного слоя воздуха, или экоклиматом.

Большое влияние на климатические факторы оказывает растительность. Так, под пологом леса влажность воздуха всегда выше, а колебания температуры меньше, чем на полянах. Отличается и световой режим этих мест. В разных растительных ассоциациях формируется свой режим света, температуры, влажности, т. е. своеобразный фитоклимат.

Для полной характеристики климатических условий того или иного местообитания не всегда достаточно данных экоклимата или фитоклимата. Местные элементы среды (рельеф, экспозиция, растительность и т. п.) очень часто так изменяют в конкретном участке режим света, температуры, влажности, движение воздуха, что он значительно может отличаться от климатических условий местности. Локальные модификации климата, складывающиеся в приземном слое воздуха, называют микроклиматом. Например, условия жизни, окружающие личинок насекомых, живущих под корой дерева, иные, чем в лесу, где это дерево растет. Температура южной стороны ствола может быть на 10 -- 15°С выше температуры ее северной стороны. Устойчивым микроклиматом обладают заселенные животными норы, дупла деревьев, пещеры. Четких же различий между экоклиматом и микроклиматом не существует. Считается, что экоклимат -- это климат больших территорий, а микроклимат -- климат отдельных небольших участков. Микроклимат оказывает влияние на живые организмы той или иной территории, местности (рис. 35).


Рис. 3

вверху -- хорошо прогреваемый склон южной экспозиции;

внизу -- горизонтальный участок плакора (флористический состав на обоих участках одинаков)

Наличие в одной местности многих микроклиматов обеспечивает сосуществование видов, обладающих неодинаковыми требованиями к внешней среде.

Географическая поясность и зональность. Распространение живых организмов на Земле тесно связано с географическими поясами и зонами. Пояса имеют широтное простирание, что, естественно, обусловлено в первую очередь радиационными рубежами и характером атмосферной циркуляции. На поверхности земного шара выделяют 13 географических поясов, имеющих распространение на материках и океанах (рис. 36).

Рис. 36.

Это такие, как арктический, антарктический, субарктический, субантарктический, северный и южный умеренные, северный и южный субарктические, северный и южный тропические, северный и южный субэкваториальные и экваториальный. Внутри поясов выделяют географические зоны, где наравне с радиационными условиями принимаются во внимание увлажнение земной поверхности и соотношение тепла и влаги, свойственные данной зоне. В отличие от океана, где обеспеченность влагой полная, на материках соотношение тепла и влаги может иметь значительные отличия. Отсюда географические пояса распространяются на материки и океаны, а географические зоны -- только на материки. Различают широтные и меридиальные или долготные природные зоны. Первые тянутся с запада на восток, вторые -- с севера на юг. В долготном направлении широтные зоны подразделяются на подзоны, а в широтном -- на провинции.

Основоположником учения о природной зональности является В. В. Докучаев (1846--1903), который обосновал зональность как всеобщий закон природы. Этому закону подчинены все явления в пределах биосферы. Основные причины зональности -- форма Земли и ее положение относительно солнца. На распределение тепла на Земле помимо широтности влияют характер рельефа и высота местности над уровнем моря, соотношение суши и моря, морские течения и др.

В дальнейшем радиационные основы формирования зональности земного шара были разработаны А. А. Григорьевым и М. И. Будыко. Для установления количественной характеристики соотношения тепла и влаги для различных географических зон ими были определены некоторые коэффициенты. Соотношение тепла и влаги выражено отношением радиационного баланса поверхности к скрытой теплоте испарения и сумме осадков (радиационный индекс сухости). Был установлен закон, получивший название закона периодической географической зональности (А. А. Григорьева -- М. И. Будыко), который гласит, что со сменой географических поясов аналогичные географические (ландшафтные, природные) зоны и их некоторые общие свойства периодически повторяются.

Каждая зона приурочена к определенному интервалу значений-показателей: особый характер геоморфологических процессов, особый тип климата, растительности, почв и животного мира. На территории бывшего СССР отмечали следующие географические зоны: ледяную, тундры, лесотундры, тайги, смешанных лесов. Русской равнины, муссонных смешанных лесов Дальнего Востока, лесостепей, степей, полупустынь, пустынь умеренного пояса, пустынь субтропического пояса, средиземноморского и влажных субтропиков.

Одним из важных условий изменчивости организмов и их зонального размещения на земле служит изменчивость химического состава среды. В этом отношении большое значение имеет учение А. П. Виноградова о биогеохимических провинциях, которые определяются зональностью химического состава почв, а также климатической, фитогеографической и геохимической зональностью биосферы. Биогеохимические провинции -- это области на поверхности Земли, различающиеся по содержанию (в почвах, водах и т. д.) химических соединений, с которыми связаны определенные биологические реакции со стороны местной флоры и фауны.

Наряду с горизонтальной зональностью в наземной среде четко проявляется высотная или вертикальная поясность.

Растительность горных стран более богата, чем на прилегающих равнинах, и характеризуется повышенным распространением эндемических форм. Так, по данным О. Е. Агаханянца (1986), флора Кавказа насчитывает 6350 видов, из которых 25% эндемичны. Флора гор Средней Азии оценивается в 5500 видов, из них 25--30% эндемики, в то время как на прилегающих равнинах южных пустынь насчитывается 200 видов растений.

При подъеме в горы повторяется та же смена зон, что и от экватора к полюсам. У подножия обычно располагаются пустыни, затем степи, широколиственные леса, хвойные леса, тундра и, наконец, льды. Однако полной аналогии все же нет. При подъеме в горы понижается температура воздуха (средний градиент температуры воздуха 0,6 °С на 100 м), снижается испаряемость, усиливаются ультрафиолетовая радиация, освещенность и т. д. Все это заставляет растения приспосабливаться к сухой или влажной вреде. Здесь доминируют среди растений подушкообразные жизненные формы, многолетники, у которых выработана адаптация к сильной ультрафиолетовой радиации и снижению транспирации.

Своеобразен и животный мир высокогорных районов. Пониженное давление воздуха, значительная солнечная радиация, резкие колебания дневных и ночных температур, изменение влажности воздуха с высотой способствовали выработке специфических физиологических адаптации организма горных животных. Например, у животных увеличивается относительный объем сердца, возрастает содержание гемоглобина в крови, что позволяет более интенсивно поглощать кислород из воздуха. Каменистый грунт осложняет или почти исключает норовую деятельность животных. Многие мелкие животные (мелкие грызуны, пищухи, ящерицы и др.) находят убежища в расщелинах скал, в пещерах. Из птиц для горных районов характерны горные индейки (улары), горные вьюрки, жаворонки, из крупных птиц -- бородачи, грифы, кондоры. В горах из крупных млекопитающих обитают бараны, козлы (в том числе и снежные козлы), серны, яки и др. Хищники представлены такими видами, как волки, лисицы, медведи, рыси, снежный барс (ирбис) и т. д.