Типы регенерации. Регенерация. Виды регенерации. Физиологическая регенерация, ее значение. Проявление физиологической регенерации на субклеточном, клеточном и тканевом уровнях. Регуляция регенерационных процессов


Регенерация (в патологии) - это восстановление целости тканей, нарушенной каким-либо болезненным процессом или внешним травмирующим воздействием. Восстановление происходит за счет соседних клеток, заполнения молодыми клетками дефекта и последующего превращения их в зрелую ткань. Такая форма носит название репаративной (возмещающей) регенерации. При этом возможны два варианта регенерации: 1) убыль возмещается тканью того же вида, что и погибшая (полная регенерация); 2) убыль замещается молодой соединительной (грануляционной) тканью, превращающейся в рубцовую (неполная регенерация), что является не регенерацией в собственном смысле, а заживлением тканевого дефекта.

Регенерация предшествует освобождение данного участка от погибших клеток путем ферментативного их расплавления и всасывания в лимфу или кровь или путем (см.). Продукты расплавления являются одним из стимуляторов размножения соседних клеток. Во многих органах и системах существуют участки, клетки которых являются источником размножения клеток при регенерации. Например, в костной системе таким источником является надкостница, клетки которой, размножаясь, образуют вначале остеоидную ткань, в дальнейшем превращающуюся в кость; в слизистых оболочках - клетки глубоколежащих желез (крипты). Регенерация клеток крови происходит в костном мозге и вне его в системе и ее производных (лимфатических узлах, селезенке).

Способностью к регенерации обладают далеко не все ткани и не в одинаковой степени. Так, мышечные клетки сердца не способны к размножению, завершающемуся образованием зрелых мышечных волокон, поэтому всякий дефект мышц миокарда замещается рубцом (в частности, после инфаркта). При гибели ткани мозга (после кровоизлияния, артериосклеротического размягчения) дефект не замещается нервной тканью, а образуется киота.

Иногда возникающая при регенерации ткань по строению отличается от исходной (атипическая регенерация) или объем ее превышает объем погибшей ткани (гиперрегенерация). Такое течение регенерационного процесса может привести к возникновению опухолевого роста.

Регенерация (лат. regenerate - возрождение, восстановление) - восстановление анатомической целости органа или ткани после гибели структурных элементов.

В физиологических условиях процессы регенерации происходят непрерывно с различной интенсивностью в разных органах и тканях соответственно интенсивности отживания клеточных элементов данного органа или ткани и замещения их новообразованными. Непрерывно замещаются форменные элементы крови, клетки покровного эпителия кожи, слизистых оболочек желудочно-кишечного тракта, дыхательных путей. Циклические процессы в женской половой сфере приводят к ритмическому отторжению и обновлению эндометрия путем его регенерации.

Все эти процессы являются физиологическим прототипом патологической регенерации (ее называют еще репаративной). Особенности развития, течения и исхода репаративной регенерации определяются размерами гибели ткани и характером патогенных воздействий. Последнее обстоятельство особенно надо иметь в виду, так как условия и причины гибели ткани имеют существенное значение для регенерационного процесса и его исходов. Так, например, особый характер имеют рубцы после ожогов кожи, отличающиеся от рубцов другого происхождения; сифилитические рубцы грубы, приводят к глубоким втяжениям и обезображиванию органа и т. д. В отличие от физиологической регенерации, репаративная регенерация охватывает широкий круг процессов, ведущих к возмещению дефекта, вызванного утратой ткани вследствие ее повреждения. Различают полную репаративную регенерацию - реституцию (замещение дефекта тканью того же вида и той же структуры, что и погибшая) и неполную репаративную регенерацию (заполнение дефекта тканью, обладающей большими пластическими свойствами, чем погибшая, т. е. обычной грануляционной тканью и соединительной тканью с дальнейшим превращением ее в рубцовую). Таким образом, в патологии под регенерацией часто подразумевают заживление.

С понятием регенерации связано также понятие об организации, поскольку в основе обоих процессов лежат общие закономерности новообразования тканей и понятие субституции, т. е. вытеснения и замещения новообразованной тканью ткани предсуществовавшей (например, субституция тромба фиброзной тканью).

Степень полноты регенерации определяется двумя основными факторами: 1) регенерационная потенция данной ткани; 2) объем дефекта и одно- или разнородность видовой принадлежности погибших тканей.

Первый фактор нередко связывают со степенью дифференцировки данной ткани. Однако само понятие дифференцировки и содержание этого понятия являются весьма относительными, и сравнение тканей по этому признаку с установлением количественной градации дифференцированности в функциональном и морфологическом отношениях невозможно. Наряду с тканями, обладающими высокой регенерационной потенцией (например, ткань печени, слизистые оболочки желудочно-кишечного тракта, органы кроветворения и др.), существуют органы с ничтожной потенцией к регенерации, в которых регенерация никогда не завершается полным восстановлением утраченной ткани (например, миокард, ЦНС). Чрезвычайно высокой пластичностью обладают соединительная ткань, элементы стенки мельчайших кровеносных и лимфатических сосудов, периферические нервы, ретикулярная ткань и ее производные. Поэтому пластическое раздражение, каковым является травма в широком смысле этого слова (т. е. все формы ее), прежде всего и полнее всего стимулирует рост этих тканей.

Объем погибшей ткани имеет существенное значение для полноты регенерации, и эмпирически более или менее известны количественные границы потери ткани для каждого органа, определяющие степень восстановления. Полагают, что для полноты регенерации значение имеет не только объем как чисто количественная категория, но и комплексное разнообразие погибших тканей (это особенно относится к гибели тканей, вызванной токсикоинфекционными воздействиями). Для объяснения этого факта следует, по-видимому, обратиться к общим закономерностям стимуляции пластических процессов в условиях патологии: стимуляторами являются сами продукты тканевой гибели (гипотетические «некрогормоны», «митогенетические лучи», «трефоны» и т. д.). Одни из них являются специфическими стимуляторами для клеток определенного вида, другие - неспецифическими, стимулирующими наиболее пластические ткани. К неспецифическим стимуляторам относят продукты распада и жизнедеятельности лейкоцитов. Их наличие при реактивном воспалении, развивающемся всегда при гибели не только паренхиматозных элементов, но и сосудоносящей стромы, способствует размножению наиболее пластических элементов - соединительной ткани, т. е. развитию в конечном счете рубца.

Существует общая схема последовательности процессов регенерации независимо от области, где она происходит. В условиях патологии процессы регенерации в узком смысле этого слова и процессы заживления имеют различный характер. Это различие определяется характером гибели ткани и избирательной направленностью действия патогенного фактора. Чистые формы регенерации, т. е. восстановление ткани, идентичной утраченной, наблюдаются в тех случаях, когда под влиянием патогенного воздействия погибают только специфические паренхиматозные элементы органа при условии их высокой регенерирующей потенции. Примером этого является регенерация эпителия канальцев почки, избирательно поврежденного токсическим воздействием; регенерация эпителия слизистых оболочек при десквамации его; регенерация альвеолоцитов легкого при десквамативном катаре; регенерация эпителия кожи; регенерация эндотелия кровеносных сосудов и эндокарда и др. В этих случаях источником регенерации являются оставшиеся клеточные элементы, размножение, созревание и дифференциация которых приводит к полному замещению утраченных паренхиматозных элементов. При гибели сложных структурных комплексов восстановление утраченной ткани идет из особых участков органа, являющихся своеобразными центрами регенерации. В слизистой оболочке кишечника, в эндометрии такими центрами являются железистые крипты. Их размножающиеся клетки покрывают дефект сначала одним слоем недифференцированных клеток, из которых затем дифференцируются железы и восстанавливается структура слизистой. В костной системе таким центром регенерации является надкостница, в покровном плоском эпителии - мальпигиев слой, в системе крови - костный мозг и экстрамедуллярные производные ретикулярной ткани.

Общим законом регенерации является закон развития, согласно которому в процессе новообразования возникают юные недифференцированные клеточные производные, в дальнейшем проходящие этапы морфологической и функциональной дифференцировки вплоть до формирования зрелой ткани.

Гибель участков органа, состоящих из комплекса различных тканей, вызывает реактивное воспаление (см.) по периферии. Это приспособительный акт, так как воспалительная реакция сопровождается гиперемией и повышением тканевого метаболизма, что способствует росту новообразующихся клеток. Помимо того, клеточные элементы воспаления из группы гистофагоцитов являются пластическим материалом для новообразования соединительной ткани.

В патологии нередко анатомическое заживление достигается при помощи грануляционной ткани (см.) - этапа новообразования фиброзного рубца. Грануляционная ткань развивается почти при всякой репаративной регенерации, но степень ее развития и конечные исходы варьируют в очень широких пределах. Иногда это с трудом различимые при микроскопическом исследовании нежные участки фиброзной ткани, иногда грубые плотные тяжи гиалинизированной брадитрофной рубцовой ткани, нередко подвергающейся кальцинозу (см.) и оссификации.

Помимо регенерационной потенции данной ткани, характера ее поражения, объема его, важное значение в регенерационном процессе имеют общие факторы. К ним относят возраст субъекта, характер и особенности питания, общую реактивность организма. При нарушениях иннервации, авитаминозах обычное течение репаративной регенерации извращается, что чаще всего выражается в замедлении процесса регенерации, вялости клеточных реакций. Существует также понятие о фибропластическом диатезе как о конституциональной особенности организма реагировать на различные патогенные раздражения повышенным образованием фиброзной ткани, что проявляется формированием келоида (см.), спаечной болезнью. В клинической практике важно учитывать общие факторы для создания оптимальных условий полноты регенерационного процесса и заживления.

Регенерация является одним из важнейших приспособительных процессов, обеспечивающих восстановление здоровья и продолжения жизни при чрезвычайных обстоятельствах, создаваемых болезнью. Однако, как и любой приспособительный процесс, регенерация на известном этапе и при некоторых путях развития может терять приспособительное значение и сама создавать новые формы патологии. Обезображивающие рубцы, деформирующие орган, резко нарушающие его функцию (например, рубцовое превращение клапанов сердца в исходе эндокардита), создают нередко тяжелую хроническую патологию, требующую специальных лечебных мероприятий. Иногда новообразованная ткань количественно превосходит объем погибшей (суперрегенерация). Помимо того, во всяком регенерате имеются элементы атипизма, резкая выраженность которых является этапом развития опухоли (см.). Регенерация отдельных органов и тканей - см. в соответствующих статьях об органах и тканях.

ВОЛГОГРАДСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ ФИЗИЧЕСКОЙ КУЛЬТУРЫ

Реферат

по биологии

на тему:

«Регенерация, ее виды и уровни. Условия, влияющие на течение восстановительных процессов»

Выполнил: студент группы 108

Тимофеев Д. М

Волгоград 2003

Введение


    Понятие регенерации

  1. Виды регенерации

Заключение

Список используемой литературы

Введение
Регенерация - обновление структур организма в процессе жизнедеятельности и восстановление тех структур, которые были утрачены в результате патологических процессов. В большей степени регенерация присуща растениям и беспозвоночным животным, в меньшей - позвоночным. Регенерация - в медицине - полное восстановление утраченных частей.

Явления регенерации были знакомы людям еще в глубокой древности. К концу 19 в. был накоплен материал,раскрывающий закономерности регенераторной реакции у человека и животных, но особенно интенсивно проблема регенрации разрабатывается с 40-х гг. 20 в.

Ученые давно пытаются понять, каким образом земноводные - например, тритоны и саламандры -- регенерируют оторванные хвосты, конечности, челюсти. Более того, у них восстанавливаются и поврежденное сердце, и глазные ткани, и спинной мозг. Способ, применяемый земноводными для саморемонта, стал понятен, когда ученые сравнили регенерацию зрелых особей и эмбрионов. Оказывается, на ранних стадиях развития клетки будущего существа незрелы, их участь вполне может измениться.

В данном реферате будут дано понятие и рассмотрены виды регенерации, а также особенности течения восстановительных процессов.


  1. Понятие регенерации

РЕГЕНЕРАЦИЯ (от позднелат. regenera-tio -возрождение, возобновление) в биологии, восстановление организмом утраченных или повреждённых органов и тканей, а также восстановление целого организма из его части. Регенерация наблюдается в естественных условиях, а также может быть вызвана экспериментально.

Р егенерация у животных и человека - образование новых структур взамен удалённых либо погибших в результате повреждения (репаратинпая регенерация) или утраченных в процессе нормальной жизнедеятельности (физиологнческая регенерация); вторичное развитие, вызванное утратой развившегося ранее органа. Регенерировавший орган может иметь такое же строение, как удалённый, отличаться от него или совсем не походить на него (атипичная регенерация) 1 .

Термин « регенерация» предложен в 1712 франц. учёным Р. Реомюром, изучавшим регенерацию ног речного рака. У многих беспозвоночных возможна регенерация целого организма из кусочка тела. У высокоорганизонанных животных это невозможно - регенерируют лишь отдельные органы или их части. Регенерация может происходить путём роста тканей на раневой поверхности, перестройки оставшейся части органа в новый или путём роста остатка органа без изменения его формы. Представление об ослаблении способности к регенерации по мере повышения организации животных ошибочно, т. к. процесс регенерации зависит не только от уровня организации животного, но и от многих других факторов и характеризуется значит, изменчивостью. Неправильно также утверждение, что способность к регенерации закономерно падает с возрастом; она может и повышаться в процессе онтогенеза, но в период старости часто наблюдают её снижение. За последнюю четверть века показано, что, хотя у млекопитающих и человека целые наружные органы не регенерируют, внутренние их органы, а также мышцы, скелет, кожа способны к регенерации , которую изучают на органном, тканевом, клеточном и субклеточном уровнях. Разработка методов усиления (стимуляции) слабой и восстановления утраченной способности к регенерации приблизит учение о регенерации к медицине.

Регенерация в медицине. Различают физиологическую, репаративную и патологическую регенерацию. При травмах и др. патологических состояниях, которые сопровождаются массовой гибелью клеток, восстановление тканей осуществляется за счёт репаративнои (восстановительной) регенерации. Если в процессе репаративной регенерации утраченная часть замещается равноценной, специализированной тканью, говорят о полной регенерации (реституции); если на месте дефекта разрастается неспециализированная соединительная ткань,- о неполной регенерации (заживлении посредством рубцевания). В ряде случаев при субституции функция восстанавливается за счёт интенсивного новообразования ткани (аналогичной погибшей) в неповреждённой части органа. Это новообразование происходит путём либо усиленного размножения клеток, либо за счёт внутриклеточной регенерации- восстановления субклеточных структур при неизменённом числе клеток (сердечная мышца, нервная ткань). Возраст, особенности обмена веществ, состояние нервной и эндокринной систем, питание, интенсивность кровообращения в повреждённой ткани, сопутствующие заболевания могут ослабить, усилить или качественно изменить процесс регенерации. В некоторых случаях это приводит к патологической регенерации. Её проявления: длительно незаживающие язвы, нарушения срастания переломов костей, избыточные разрастания тканей или переход одного типа ткани в другой. Лечебные воздействия на процесс регенерации заключаются в стимуляции полной и предотвращении патологической регенерации.

Р егенерация у растений может происходить на месте утраченной части (реституция) или на другом месте тела (репродукция). Весеннее восстановление листьев вместо опавших осенью - естественная регенерация типа репродукции. Обычно, однако, под регенерацией понимают лишь восстановление насильственно отторженных частей. При такой регенерации организм прежде всего использует основные пути нормального развития. Поэтому регенерация органов у растений происходит преимущественно путём репродукции: отнятые органы компенсируются развитием существующих или образующихся вновь метамерных заложений. Так, при отрезании верхушки побега усиленно развиваются боковые побеги. Растения или их части, развивающиеся не метамерно, легче регенерируют путём реституции, как и участки тканей. Например, поверхность ранения может покрыться так называемой раневой перидермой; рана на стволе или ветке может зарубцеваться наплывами (каллюсами). Размножение растений черенками - простейший случай регенерации, когда из небольшой вегетативной части восстанавливается целое растение.

Широко распространена регенерация и из отрезков корня, корневища или слоевища. Можно вырастить растения из листовых черенков, кусочков листа (например, у бегоний). У некоторых растений удавалась регенерация из изолированных клеток и даже из отдельных изолированных протопластов, а у некоторых видов сифоновых водорослей - из небольших участков их многоядерной протоплазмы. Молодой возраст растения обычно способствует регенерации, но на слишком ранних стадиях онтогенеза орган может оказаться неспособным к регенерации. Как биологическое приспособление, обеспечивающее зарастание ран, восстановление случайно утраченных органов, а нередко и вегетативное размножение, регенерация имеет большое значение для растениеводства, плодоводства, лесоводства, декоративного садоводства и др. Она даёт материал и для решения ряда теоретических проблем, в т. ч. и проблем развития организма. Большую роль в процессах регенерации играют ростовые вещества.


  1. Виды регенерации

Различают два вида регенерации - физиологическую и репаративную.

Физиологическая регенерация - непрерывное обновление структур на клеточном (смена клеток крови, эпидермиса и др.) и внутриклеточном (обновление клеточных органелл) уровнях, которым обеспечивается функционирование органов и тканей.

Репаративная регенерация - процесс ликвидации структурных повреждений после действия патогенных факторов.

Оба вида регенерации не являются обособленными, не зависимыми друг от друга. Так, репаративная регенерация развертывается на базе физиологической, т. е. на основе тех же механизмов, и отличается лишь большей интенсивностью проявлений. Поэтому репаративную регенерацию следует рассматривать как нормальную реакцию организма на повреждение, характеризующуюся резким усилением физиологических механизмов воспроизведения специфических тканевых элементов того или иного органа.

Значение регенерации для организма определяется тем, что на основе клеточного и внутриклеточного обновления органов обеспечивается широкий диапазон приспособительных колебаний их функциональной активности в меняющихся условиях окружающей среды, а также восстановление и компенсация нарушенных под воздействием различных патогенных факторов функций 1 .

Физиологическая и репаративная регенерации являются структурной основой всего разнообразия проявлений жизнедеятельности организма в норме и патологии.

Процесс регенерации развертывается на разных уровнях организации - системном, органном, тканевом, клеточном, внутриклеточном. Осуществляется он путем прямого и непрямого деления клеток, обновления внутриклеточных органелл и их размножения. Обновление внутриклеточных структур и их гиперплазия являются универсальной формой регенерации, присущей всем без исключения органам млекопитающих и человека. Она выражается либо в форме собственно внутриклеточной регенерации, когда после гибели части клетки ее строение восстанавливается за счет размножения сохранившихся органелл, либо в виде увеличения числа органелл (компенсаторная гиперплазия органелл) в одной клетке при гибели другой.

Восстановление исходной массы органа после его повреждения осуществляется различными путями. В одних случаях сохранившаяся часть органа остается неизмененной или малоизмененной, а недостающая его часть отрастает от раневой поверхности в виде четко отграниченного регенерата. Такой способ восстановления утраченной части органа называют эпиморфозом. В других случаях происходит перестройка оставшейся части органа, в процессе которой он постепенно приобретает исходные форму и размеры. Этот вариант процесса регенерации называют морфаллаксисом. Чаще эпиморфоз и морфаллаксис встречаются в различных сочетаниях. Наблюдая увеличение размеров органа после его повреждения, прежде говорили о его компенсаторной гипертрофии. Цитологический анализ этого процесса показал, что в его основе лежит размножение клеток, т. е. регенераторная реакция. В связи с этим процесс получил название «регенерацнонная гипертрофия».

Принято считать, что репаративная регенерация развертывается после наступления дистрофических, некротических и воспалительных изменении, Так, однако, бывает далеко не всегда. Значительно чаще немедленно после начала действия патогенного фактора резко интенсифицируется физиологическая регенерация, направленная на компенсацию убыли структур, в связи с их внезапным ускоренным расходованием или гибелью. В это время она представляет собой по существу репаративную регенерацию.

Об источниках регенерации имеются две точки зрения. Согласно одной из них (теория резервных клеток), происходит пролиферация камбиальных, незрелых клеточных элементов (так наз. стволовых клеток и клеток-предшественников), которые, интенсивно размножаясь и дифференцируясь, восполняют убыль высокодифференцированных клеток данного органа, обеспечивающих его специфическую функцию. Другая точка зрения допускает, что источником регенерации могут быть высокодифференцированные клетки органа, которые в условиях патологического процесса могут перестраиваться, утрачивать часть своих специфических органелл и одновременно приобретать способность к митотическому делению с последующей пролиферацией и дифференцировкой.


  1. Условия, влияющие на течение восстановительных процессов

Исходы процесса регенерации могут быть различными. В одних случаях регенерация заканчивается формированием части, идентичной погибшей по форме J построенной из такой же ткани. В этих случаях говорят о полной регенерации (реституции, или гомоморфозе). В результате регенерации может образоваться и совсем иной орган, чем удаленный, что обозначают как гетероморфоз (напр., образование у ракообразных конечности вместо усика). Наблюдают также неполное развитие регенерирующего органа - гипотипцю (например, появление меньшего числа пальцев на конечности у тритона). Случается и обратное - формирование большего числа конечностей, чем в норме, обильное новообразование костной ткани в месте перелома и др. (избыточная регенерация, или суперрегенерация) . В ряде случаев у млекопитающих и человека в результате регенерации в зоне повреждения образуется не специфическая для данного органа ткань, а соединительная ткань, в дальнейшем подвергающаяся рубцеванию, что обозначают как неполную регенерацию. пли реституцией. Завершение восстановительного процесса полной регенерацией, или субституцией, в значительной мере определяется сохранностью или повреждением соединительнотканного каркаса органа. Если избирательно гибнет только паренхима органа, напр. печени, то обычно наступает полная ее регенерация; если же некрозу подвергается и строма, процесс всегда заканчивается формированием рубца. В силу различных причин (гиповитаминоз, истощение и др.) течение репаративной регенерации может принимать затяжной характер, качественно извращаться, сопровождаясь образованием вяло гранулирующих, длительно не заживающих язв, формированием ложного сустава вместо срастания костных отломков, гиперрегенерацией ткани, метаплазией и др. В подобных случаях говорят о патологической регенерации.

Степень и формы выражения регенерационной способности неодинаковы у разных животных. Ряд простейших, кишечнополостных, плоских червей, немертин, кольчатых червей, иглокожих, полухордовых и личиночно-хордовых обладают способностью восстанавливать из отдельного фрагмента или кусочка тела целый организм. Многие представители этих же групп животных способны восстанавливать только большие участки тела (напр., головной или хвостовой его концы). Другие восстанавливают лишь отдельные утраченные органы или их часть (регенерация ампутированных конечностей, усиков, глаз - у ракообразных; частей ноги, мантии, головы, глаз, щупалепев, раковины - у моллюсков; конечностей, хвоста, глаз, челюстей - у хвостатых амфибий и др.). Проявления регенерационной способности у высокоорганизованных животных, а также человека отличаются значительным разнообразием - могут восстанавливаться крупные части внутренних органов (напр., печени), мышцы, кости, кожа и др., а также отдельные клетки после гибели части их цитоплазмы и органелл.

В связи с тем , что высшие животные не способны целиком восстанавливать организм или крупные его части из небольших фрагментов, в Качестве одной из важных закономерностей регенерационной способности в 19 в. было выдвинуто положение, что она снижается по мере повышения организации животного. Однако в процессе углубленной разработки проблемы регенерации, особенно проявлений регенерации у млекопитающих и человека, становилась все более очевидной ошибочность этого положения. Многочисленные примеры свидетельствуют о том, что среди сравнительно низкоорганизованных животных встречаются такие, которые отличаются слабой регенерационной способностью (губки, круглые черви), в то время как многие относительно высокоорганизованные животные (иглокожие, низшие хордовые) этой способностью обладают в достаточно высокой степени. Кроме того, среди близкородственных видов животных нередко встречаются как хорошо, так и плохо регенерирующие.

Многочисленные исследования восстановительных процессов у млекопитающих и человека, систематически проводившиеся с середины 20 в., также свидетельствуют о несостоятельности представления о резком снижении или даже полной утрате регенерационной способности по мере повышения организации животного и специализации его тканей 1 . Концепция регенерационной гипертрофии свидетельствует о том, что восстановление исходной формы органа не является единственным критерием наличия регенерационной способности и что для внутренних органов млекопитающих еще более важным показателем в этом отношении является их способность восстанавливать свою исходную массу, т. е. общее количество структур, обеспечивающих специфическую функцию. В результате электронно-микроскопических исследований коренным образом изменились представления о диапазоне проявлений регенераторной реакции и, в частности, стало очевидным, что элементарной формой этой реакции является размножение не клеток, а восстановление и гиперплазия их ультраструктур. Это, в свою очередь, явилось основанием для отнесения к процессам регенерации такого феномена, как гипертрофия клетки. Считалось, что в основе этого процесса лежит простое увеличение ядра и массы коллоида цитоплазмы. Электронно микроскопические исследования позволили установить, что гипертрофия клетки - процесс структурный, обусловленный увеличением числа ядерных и цитоплазматических органелл и на основе этого обеспечивающий нормализацию специфической функции данного органа при гибели той или иной его части, т. е. в принципе это процесс регенераторный, восстановительный. С помощью электронной микроскопии была расшифрована сущность и такого широко распространенного явления, как обратимость дистрофических изменений органов и тканей. Оказалось, что это не просто нормализация состава коллоида ядра и цитоплазмы, нарушенного в результате патологического процесса, а значительно более сложный процесс нормализации архитектоники клетки за счет восстановления структуры поврежденных органелл и их новообразования. Т. о. и этот феномен, ранее стоявший особняком среди других общепатологических процессов, оказался проявлением регенераторной реакции организма.

В целом же все эти данные явились основанием для существенного расширения представлений о роли и значении процессов регенерации в жизнедеятельности организма, и в частности для выдвижения принципиально нового положения о том, что эти процессы имеют отношение не только к заживлению повреждений, а являются основой функциональной активности органов. Важную роль в утверждении этих новых представлений о диапазоне и сущности процессов регенерации сыграла точка зрения, что главным в регенерации органа является не только достижение им исходных анатомических параметров, но и нормализация нарушенной функции, обеспечиваемая различными вариантами структурных преобразований. Именно в таком принципиально новом освещении под структурно-функциональным углом зрения учение о регенерации утрачивает свое преимущественно биологическое звучание (восстановление удаленных органов) и становится первостепенно важным для решения основных проблем современной клин. медицины, в частности проблемы компенсации нарушенных функций.

Эти данные убеждают в том, что регенерационная способность у высших животных и , в частности, у человека характеризуется значительным разнообразием своих проявлений. Так, в некоторых органах и тканях, напр. в костном мозге, покровном эпителии, слизистых оболочках, костях, физиологическая регенерация выражается в непрерывном обновлении клеточного состава, а репаратпвная регенерация - в полном восстановлении дефекта ткани и реконструкции ее исходной формы путем интенсивного митотического деления клеток. В других органах, напр. в печени, почках, поджелудочной железе, органах эндокринной системы, легких и др., обновление клеточного состава происходит сравнительно медленно, а ликвидация повреждения и нормализация нарушенных функций обеспечиваются на основе двух процессов - размножения клеток и наращивания массы органелл в предсуществующих сохранившихся клетках, в результате чего они подвергаются гипертрофии и соответственно этому возрастает их функциональная активность. Характерно, что исходная форма этих органов после повреждения чаще всего не восстанавливается, в месте травмы" образуется рубец, а восполнение утраченной части происходит за счет неповрежденных отделов, т. е. восстановительный процесс протекает по типу регенерационной гипертрофии. Внутренние органы млекопитающих и человека обладают огромной потенциальной способностью к регенерацпонной гипертрофии; напр., печень в течение 3-4 нед. после резекции 70% ее паренхимы по поводу доброкачественных опухолей, эхинококка и др. восстанавливает исходный вес и в полном объеме - функциональную активность. В центральной нервной системе и миокарде, клетки которых не обладают способностью к митотическому делению, структурное и функциональное восстановление после повреждения достигается исключительно или почти исключительно за счет увеличения массы органелл в сохранившихся клетках и их гипертрофии, т. е. восстановительная способность выражается только в форме внутриклеточной регенерации.

В различных органах в основе характерного для млекопитающих и человека разнообразия проявлений физиологической и репаративной регенерации лежат скорее всего структурно-функциональные особенности каждого из них. Напр., хорошо выраженная способность к размножению клеток, свойственная эпителию кожи и слизистых оболочек, связана с основной его функцией - непрерывным поддержанием целости покровов на границе с окружающей средой. Также особенностями функции объясняется высокая способность костного мозга к клеточной регенерации непрерывным отделением все новых и новых клеток от общей массы в кровь. Эпителиальные клетки, выстилающие ворсинки тонкой кишки, регенерируют по клеточному типу, т. к. для осуществления ферментативной деятельности они сходят с ворсинки в просвет кишки, а их место тотчас занимают новые клетки, в свою очередь уже готовые отторгнуться так же, как это только что случилось с их предшественницами. Восстановление опорной функции кости может быть достигнуто только путем пролиферации клеток, и именно в области перелома, а не в каком-либо ином месте. В ряде других органов, напр. в печени, почках, легких, поджелудочной железе, надпочечниках, необходимый объем работы после повреждения обеспечивается прежде всего восстановлением исходной массы, поскольку основная функция этих органов связана не столько с сохранением формы, сколько с определенным количеством и размерами структурных единиц, выполняющих в каждом из них специфическую деятельность,- печеночных долек, альвеол, панкреатических островков, нефронов и др. В миокарде и в центральной нервной системе митоз оказался в значительной мере или полностью вытесненным внутриклеточными механизмами репарации повреждения. В центральной нервной системе , в частности, функция, напр., пирамидной клетки (пирамидального нейроцита) коры головного мозга состоит в непрерывном поддержании связей с окружающими и располагающимися в самых различных органах нервными клетками. Она обеспечивается соответствующей структурой - многочисленными и разнообразными отростками, соединяющими тело клетки с различными органами и тканями. Менять такую клетку в порядке физиологической или репаративной регенерации- это значит менять и все эти исключительно сложные ее связи как внутри нервной системы, так и далеко на периферии. Поэтому характерным, наиболее целесообразным и экономичным путем восстановления нарушенной функции для клеток центральной нервной системы является усиление работы клеток, соседних с погибшими, за счет гиперплазии их специфических ультраструктур, т. е. исключительно путем внутриклеточной регенерации.

Таким образом, эволюционный процесс в мире животных характеризовался не постепенным ослаблением регенерапионной способности, а нарастающим разнообразием ее проявлений. При этом регенерационная способность в каждом конкретном органе приобретала ту форму, которая обеспечивала наиболее эффективные пути восстановления его нарушенных функций.

В основе всего разнообразия проявлений регенерационной способности у млекопитающих и человека лежат две ее формы - клеточная и внутриклеточная, которые в разных органах или сочетаются в различных комбинациях, или существуют обособленно. В основе этих казалось бы крайних форм процесса регенерации лежит единый феномен - гиперплазия ядерных и цитоплазматических ультраструктур. В одном случае эта гиперплазия развертывается в предсуществующих клетках и каждая из них увеличивается, а в другом - то же число новообразованных ультраструктур размещается в разделившихся клетках, сохраняющих нормальные размеры. В итоге общее число элементарных функционирующих единиц (митохондрий, ядрышек, рибосом и др.) в обоих случаях оказывается одинаковым. Поэтому среди всех этих комбинаций форм регенераторной реакции нет «худших» и «лучших», более или менее эффективных; каждая из них является наиболее соответствующей структуре и функции данного органа и одновременно неподходящей для всех остальных. Современное учение о внутриклеточных регенераторных и гиперпластических процессах свидетельствует о несостоятельности представлений о возможности нормализации работы патологически измененных органов на основе «чисто функционального напряжения» сохранившихся отделов; любые, даже едва уловимые функциональные сдвиги компепсаторного порядка всегда обусловливаются соответствующими пролиферативными изменениями) ядерных и цитоплазматнческих ультраструктур.

Эффективность процесса регенерации в большой мере определяется условиями, в которых он протекает. Важное значение в этом отношении имеет общее состояние организма. Истощение гиповитаминоз, нарушения иннервации и др. оказывают значительное влияние на ход репаративной регенерации, затормаживая ее и способствуя переходу в патологическую. Существенное влияние на интенсивность репаративной регенерации оказывает степень функциональной нагрузки, правильное дозирование котоpoй благоприятствует этому процессу. Скорость репаративной регенерации в известной мере определяется и возрастом, что приобретает особое значение в связи с увеличением продолжительности жизни и соответственно числа оперативных вмешательств у лиц старших возрастных групп. Обычно существенных отклонений процесса регенерации при этом не отмечается и большее значение, по-видимому, имеют тяжесть заболевания и его осложнения, чем возрастное ослабление регенерационной способности 1 .

Изменение общих и местных условий, в которых протекает процесс регенерации, может приводить как к количественным, так и качественным его изменениям. Напр., регенерация костей свода черепа от краев дефекта обычно не происходит. Если, однако, этот дефект заполнить костными опилками, он закрывается полноценной костной тканью. Изучение различных условий регенерации кости способствовало значительному совершенствованию методов ликвидации повреждений костной ткани. Изменения условий репаративной регенерации скелетных мышц сопровождаются значительным усилением и повышением ее эффективности. Она осуществляется за счет образования на концах сохранившихся волокон мышечных почек, размножения свободных миобластов, освобождения резервных клеток - сателлитов, дифференцирующихся в мышечные волокна. Важнейшим условием полноценной регенерации поврежденного нерва является соединение центрального его конца с периферическим, по футляру которого продвигается новообразованный нервный ствол. Общие и местные условия, влияющие на течение регенерации, всегда реализуются только в рамках того способа регенерации, который вообще свойствен данному органу, т. е. пока что никакими изменениями условий не удалось трансформировать регенерацию клеточную во внутриклеточную и наоборот.

В регуляции процессов регенерации участвуют многочисленные факторы эндо- и экзогенной природы. Установлены антагонистические влияния различных факторов на течение внутриклеточных регенераторных и гиперпластических процессов. Наиболее изучено влияние на регенерацию различных гормонов. Регуляция митотической активности клеток различных органов осуществляется гормонами коры надпочечников, щитовидной железы, половых желез и др. Важную роль в этом отношении играют так наз. гастроинтестинальные гормоны. Известны мощные эндогенные регуляторы митотической активности - кейлоны, простландины, их антагонисты и другие биологически активные вещества.

Заключение
Важное место в исследованиях механизмов регуляции процессов регенерации занимает изучение роли различных отделов нервной системы в их течении и исходах. Новым направлением в разработке этой проблемы является изучение иммунологической регуляции процессов регенерации, и в частности установление факта переноса лимфоцитами «регенерационной информации», стимулирующей пролиферативную активность клеток различных внутренних органов. Регулирующее влияние на течение процесса регенерации оказывает и дозированная функциональная нагрузка.

Главная проблема состоит в том, что регенерация тканей у человека происходит очень медленно. Слишком медленно, чтобы произошло восстановление действительно значительного повреждения. Если бы этот процесс удалось хоть немного ускорить, то результат оказался бы куда как значительным.

Знание механизмов регуляции регенерационной способности органов и тканей открывает перспективы для разработки научных основ стимуляции репаративной регенерации и управления процессами выздоровления.
Список использованной литературы


  1. Бабаева А. Г. Иммунологические механизмы регуляции восстановительных процессов, М., 1972

  2. Бродскии В. Я. и Урывева И. В. Клеточная полиплоидия, М., 1981;

  3. Новое в учении о регенерации, под ред. Л. Д. Лиознера, М., 1977,

  4. Регуляторные механизмы регенерации, под ред. А. Н. Студитского и Л. Д. Лиознера, М., 1973

  5. Саркисов Д. С. Регенерация и ее клиническое значение, М., 1970

  6. Саркисов Д. С. Очерки по структурным основам гомеостаза, М., 1977,

  7. Сидорова В. Ф. Возраст и восстановительная способность органов у млекопитающих, М., 1976,

  8. Уголев А. М. Энтерииовая (кишечная гормональная) система, Л., 1978, библиогр.;

  9. Условия регенерации органов у млекопитающих, под ред. Л. Д. Лиознера, М., 1972

  10. Ноздрачев А.Д., Чумасов Е.И. Периферическая нервная система. Структура, развитие, трансплантация и регенерация.- СПб. : Наука, 1999.- 280 с.:

1 Условия регенерации органов у млекопитающих, под ред. Л. Д. Лиознера, М., 1972. С. 12

Регенерация (от лат. regeneratio — возрождение) — процесс восстановления биологических структур в ходе жизнедеятельности организма. Регенерация поддерживает строение и функции организма, его целостность.Регенерационные процессы реализуются на разных уровнях организации — молекулярно-генетическом, субклеточном, клеточном, тканевом, органном, организменном.На молекулярно-генетическом уровне осуществляется репликация ДНК, ее репарация, синтез новых ферментов, молекул АТФ и т.д. Все эти процессы входят в обмен веществ клетки.На субклеточном уровне происходит восстановление структур клетки за счет образования новых структурных единиц и сборки органелл или деления сохранившихся органелл. Например, подвижные образования клеточной мембраны — рецепторы, ионные каналы и насосы — могут перемещаться, концентрироваться или распределяться в составе мембраны. Помимо этого они выходят из мембраны, разрушаются и заменяются новыми. Так, в миобластах каждую минуту деградирует и заменяется новыми молекулами примерно 1 мкм2 поверхности. В фоторецептор-ных клетках — палочках (рис. 8.73) есть наружный сегмент, состоящий примерно из тысячи так называемых фоторецепторных дисков — плотно уложенных участков клеточной мембраны, в которые погружены светочувствительные белки, связанные со зрительным пигментом. Эти диски непрерывно обновляются — деградируют на наружном конце и вновь возникают на внутреннем со скоростью 3-4 диска в час. Аналогично осуществляются процессы восстановления после повреждений. Воздействие митохондриальных ядов вызывает утрату крист митохондрий. После прекращения действия яда в печеночной клетке митохондрии восстанавливают свою структуру за 2-3 сут.Клеточный уровень регенерации подразумевает восстановление структуры и, в некоторых случаях, функций клетки. К примерам такого рода относится восстановление отростка нервной клетки нейрона. У млекопитающих этот процесс идет со скоростью 1 мм в сутки. Восстановление функций клетки может осуществляться за счет гиперплазии — увеличения количества внутриклеточных органелл (внутриклеточная регенерация).На следующем уровне — тканевом или клеточно-популяционном — происходит восполнение теряемых клеток определенного направления дифференцировки. Происходят перестройки в пределах клеточных по-пуляций, и их результатом становится восстановление функций ткани. Так, у человека время жизни клеток кишечного эпителия — 4-5 сут, тромбоцитов — 5-7 сут, эритроцитов — 120-125 сут. Ежесекундно разрушается порядка 1 млн эритроцитов и столько же образуется в красном костном мозге вновь. Возможность восстановления утраченных клеток обеспечивается благодаря тому, что в тканях существует два клеточных компартмента. Один — дифференцированные рабочие клетки, а другой — камбиальные клетки, способные к делению и последующей дифференцировке. Эти последние в настоящее время называют региональными стволовыми клетками (см. пп. 3.1.2, 3.2). Они коммити-рованы, т.е. судьба их предопределена (см. п. 8.3.1), поэтому они способны дать начало одному или нескольким определенным клеточным типам. Их дальнейшая дифференцировка определяется сигналами, поступающими извне: от окружения (межклеточными взаимодействиями) и дистантными (например, гормонами), в зависимости от которых в клетках избирательно активируются конкретные гены. Так, в эпителии тонкой кишки камбиальные клетки находятся в придонных зонах крипт (рис. 8.74). При определенных воздействиях они способны дать начало клеткам «каемчатого» всасывающего эпителия и некоторым одноклеточным железам.Органный уровень регенерации предполагает восстановление функции или структуры органа. На этом уровне наблюдаются не только преобразования клеточных популяций, но также и морфогенетические процессы. При этом реализуются те же механизмы, что и при формировании органов в эмбриогенезе. Та- Рис. 8.73. Схематическое изображение фоторецептора сетчатки — палочки: 1 — синаптическое тельце, примыкающее к нейральному слою сетчатки, 2 — ядро, 3 — аппарат Гольджи, 4 — внутренний сегмент с митохондриями, 5 — соединительная ресничка, 6 — наружный сегмент с фото-рецепторными дискамикая регенерация может осуществляться путем эпиморфоза, морфолаксиса, регенерационной гипертрофии. Эти способы и механизмы регенерации обсуждаются далее. На организменном уровне возможно в отдельных случаях воссоздание целостного организма из одной или группы клеток. Различают два вида регенерации: физиологическую и репаративную. Физиологическая (гомеостати-ческая) регенерация представляет собой процесс восстановления структур, которые снашиваются в процессе нормальной жизнедеятельности. Благодаря ей поддерживается структурный гомеостаз и обеспечивается возможность постоянного выполнения органами их функций. С общебиологической точки зрения физиологическая регенерация, как и обмен веществ, является проявлением такого важнейшего свойства жизни, как самообновление. Самообновление обеспечивает существование организма во времени и пространстве. В его основе лежит биогенная миграция атомов. На внутриклеточном уровне значение физиологической регенерации особенно велико для так называемых «вечных» тканей, утративших способность к регенерации путем деления клеток. В первую очередь это относится к нервной ткани, сетчатке глаза. На клеточном и тканевом уровнях осуществляется физиологическая регенерация в «лабильных» тканях, где Рис. 8.74. Локализация региональных стволовых клеток в эпителии тонкой кишки: 1 — неде-лящиеся клетки; 2 — делящиеся стволовые клетки; 3 — быстро делящиеся клетки; 4 — неделящиеся дифференцированные клетки; 5 — направление перемещения клеток; 6 — клетки, слущенные с поверхности кишечной ворсиныинтенсивность клеточного обновления очень велика, и в «растущих» тканях, клетки которых обновляются значительно медленнее. К первой группе относятся, например, роговица глаза, эпителий слизистой оболочки кишечника, клетки периферической крови, эпидермис кожи и его производные — волосы и ногти. Клетки таких органов, как печень, почка, надпочечник составляют вторую из указанных групп.Об интенсивности пролиферации судят по числу митозов, приходящихся на 1000 подсчитанных клеток. Если учесть, что сам митоз в среднем длится около 1 ч, а весь митотический цикл в соматических клетках в среднем протекает 22-24 ч, становится ясно, что для определения интенсивности обновления клеточного состава тканей необходимо подсчитать число митозов в течение одних или нескольких суток. Оказалось, что число делящихся клеток не одинаково в разные часы суток. Так был открыт суточный ритм клеточных делений, пример которого изображен на рис. 8.75.Суточный ритм числа митозов обнаружен не только в нормальных, но и в опухолевых тканях. Он отражает более общую закономерность, Рис. 8.75. Суточные изменения митотиче-ского индекса (МИ) в эпителии пищевода (1) и роговицы (2) мышей. Митотический индекс выражен в промилле (0/00), отражающем число митозов в тысяче подсчитанных клетока именно, ритмичность всех функций организма. Одна из современных областей биологии — хронобиология — изучает, в частности, механизмы регуляции суточных ритмов митотической активности, что имеет весьма большое значение для медицины. Существование самой суточной периодичности числа митозов указывает на регулируемость физиологической регенерации организмом. Кроме суточных, существуют лунные и годичные циклы обновления тканей и органов. Физиологическая регенерация присуща организмам всех видов, но особенно интенсивно она протекает у теплокровных позвоночных, так как у них вообще очень высока интенсивность функционирования всех органов по сравнению с другими животными. Репаративная регенерация (от лат. reparatio — восстановление) — восстановление биологических структур после травм и действия других повреждающих факторов. К таким факторам могут быть отнесены ядовитые вещества, болезнетворные агенты, высокие и низкие температуры (ожоги и обморожения), лучевые воздействия, голодание и т.д. Способность к регенерации не имеет однозначной зависимости от уровня организации, хотя давно уже было замечено, что более низко организованные животные обладают лучшей способностью к регенерации наружных органов. Это подтверждается удивительными примерами регенерации гидры, планарий, кольчатых червей, членистоногих, иглокожих, низших хордовых, например асцидий. Из позвоночных наилучшей регенерационной способностью обладают хвостатые земноводные. Известно, что разные виды одного и того же класса могут сильно отличаться по способности к регенерации. Кроме того, при изучении способности к регенерации внутренних органов оказалось, что она значительно выше у теплокровных животных, например у млекопитающих, по сравнению с земноводными. Регенерация у млекопитающих отличается своеобразием. Для регенерации некоторых наружных органов нужны особые условия. Язык, ухо, например, не регенерируют при краевом повреждении (фактически речь идет об ампутации краевой части структуры). Если же нанести сквозной дефект через всю толщу органа, восстановление идет хорошо. Регенерация внутренних органов может идти очень активно. Из небольшого фрагмента яичника восстанавливается целый орган. Есть предположение, что невозможность регенерации конечностей и других наружных органов у млекопитающих носит приспособительный характер и обусловлена отбором, поскольку при активном образе жизни требующие сложной регуляции морфогенетические процессы затрудняли бы существование. Ряд исследователей полагает, что организмы первоначально имели два способа исцеления от ран — действие иммунной системы и регенерацию. Но в ходе эволюции они стали несовместимы друг с другом. Хотя регенерация может показаться лучшим выбором, для нас более важны Т-клетки иммунной системы — основное оружие против опухолей. Регенерация конечности становится бессмысленной, если одновременно в организме бурно развиваются раковые клетки. Получается, что иммунная система, защищая нас от инфекций и рака, одновременно подавляет наши способности к восстановлению.Объем репаративной регенерации может быть очень разным.Крайний вариант — восстановление целого организма из отдельной малой его части, фактически из группы соматических клеток. Среди животных такое восстановление возможно у губок и кишечнополостных. Регенерацию гидры можно осуществить из группы клеток, полученных при продавливании ее через сито. Среди растений возможно развитие целого нового растения даже из одной соматической клетки, как это получено на примере моркови и табака. Такой вид восстановительных процессов сопровождается возникновением новой морфогенетической оси организма и назван Б.П. Токиным «соматическим эмбриогенезом», так как во многом напоминает эмбриональное развитие. В качестве подобного варианта регенерации может рассматриваться клонирование в эксперименте целого организма из одной соматической клетки у млекопитающих.Следующий по объему вариант — восстановление больших участков организма, состоящих из комплекса органов. Примером служит регенерация у гидры, ресничного червя (планарии), морской звезды (рис. 8.76). При удалении части животного из оставшегося фрагмента, даже очень небольшого, возможно восстановление полноценного организма. Например, восстановление морской звезды из сохранившегося луча.Далее в этом ряду следует регенерация отдельных органов, которая широко распространена в животном царстве, например, хвоста у ящерицы, глаз у членистоногих, глаза, конечности, хвоста у тритона.Заживление кожных покровов, ран, повреждений костей и других внутренних органов — наименее объемный процесс, но не менее важный для восстановления структурно-функциональной целостности организма.Существует несколько способов репаративной регенерации. К ним относят эпиморфоз, морфаллаксис, регенерационную гипертрофию, компенсаторную гипертрофию, заживление эпителиальных ран, тканевую регенерацию. Рис. 8.76. Регенерация комплекса органов у некоторых видов беспозвоночных животных: а — гидра; б — плоский червь; в — морская звезда; г — восстановление морской звезды из лучаЭпиморфоз представляет собой наиболее очевидный способ регенерации, заключающийся в отрастании нового органа от ампутационной поверхности. Иллюстрацией может служить регенерация хрусталика или конечности у хвостатых амфибий (рис. 8.77). Рассмотрим более детально процесс регенерации на примере эпиморфоза конечности тритона. В процессе восстановления выделяют регрессивную и прогрессивную фазы регенерации. Регрессивная фаза начинается с заживления раны, во время которого происходят следующие основные события: остановка Рис. 8.77. Регенерация хрусталика (1) из дорзальной радужки (2) у тритонакровотечения, сокращение мягких тканей культи конечности, образование над раневой поверхностью сгустка фибрина и миграция эпидермиса, покрывающего ампутационную поверхность.Затем начинается разрушение тканей непосредственно проксималь-нее места ампутации. Одновременно в разрушенные мягкие ткани проникают клетки, участвующие в воспалительном процессе, наблюдается фагоцитоз и местный отек. Вслед за этим в области под раневым эпидермисом начинается дедифференцировка специализированных клеток: мышечных, костных, хрящевых и т.д. Клетки приобретают черты мезенхимных, образуют скопление и формируют регенерационную бластему (рис. 8.78). В это же время раневой эпидермис быстро утолщается и образует апикальную эктодермальную шапочку. На этом этапе в регенерационную бластему и эктодермальную шапочку врастают сосуды и нервные волокна.Далее начинается прогрессивная фаза, для которой наиболее характерны процессы роста и морфогенеза. Длина и масса регенерационной бластемы быстро увеличиваются. Она приобретает коническую форму. Мезенхимные клетки бластемы дедифференцируются, давая начало всем специализированным клеточным типам, которые необходимы для формирования структур конечности. Осуществляется рост конечности и ее морфогенез (формообразование). Когда форма конечности в общих чертах уже сложилась, регенерат все еще меньше нормальной конечности. Чем крупнее животное, тем больше эта разница в размерах. Для завершения морфогенеза требуется время, по истечении которого регенерат достигает размеров нормальной конечности.Некоторые стадии восстановления передней конечности у тритона после ампутации на уровне плеча показаны на рис. 8.79. Рис. 8.78. Регенерация конечности у тритона: а — нормальная конечность, б — ампутация; в — формирование апикальной шапочки и бластемы; г — редиф-ференцировка клеток; д — вновь сформированная конечность. 1 — бластема; 2 — апикальная эктодермальная шапочка; 3 — редифференцировка клеток бластемы (пояснения в тексте)У молодых личинок аксолотлей конечность может регенерировать за 3 нед, у взрослых тритонов и аксолотлей — за 1-2 мес, а у наземных амбистом для этого требуется около 1 года.Морфаллаксис — регенерация путем перестройки регенерирующего участка. Примером служит регенерация гидры из кольца, вырезанного из середины ее тела, или восстановление планарии из одной десятой или двадцатой ее части. На раневой поверхности в этом случае не происходит значительных формообразовательных процессов. Отрезанный кусочек сжимается, клетки внутри него перестраиваются, и возникает целая особь уменьшенных размеров, которая затем растет. Этот способ регенерации впервые описал Т. Морган в 1900 г. В соответствии с его описанием, морфаллаксис осуществляется без митозов. Нередко имеет место сочетание эпиморфного роста наместе ампутации с реорганизацией путем морфаллаксиса в прилежащих частях тела.Регенерационная гипертрофия (эндоморфоз) относится к внутренним органам. Этот способ регенерации заключается в увеличении размеров остатка органа без восстановления исходной формы. Иллюстрацией служит регенерация печени позвоночных, в том числе млекопитающих. При краевом ранении печени удаленная часть органа никогда не восстанавливается. Раневая поверхность заживает. В то же время вну- Рис. 8.79. Регенерация передней конечности у тритона в эксперименте Рис. 8.80. Влияние возраста на увеличение числа клубочков нефронов после удаления одной почки у крыс вскоре после рождения: 1 — кривая прироста числа клубочков в нормальном постнатальном развитии в одной почке; 2 — кривые увеличения числа вновь образуемых клубочков после удаления почки на разных сроках онтогенезатри оставшейся части усиливается размножение клеток (гиперплазия) и даже после удаления 2/3 печени восстанавливаются исходные масса и объем, но не форма. Внутренняя структура печени оказывается нормальной, дольки имеют типичную для них величину. Функция печени также возвращается к норме.Компенсаторная (викарная) гипертрофия заключается в изменениях в одном из органов при нарушении в другом, относящемся к той же системе органов. Пример — гипертрофия в одной из почек при удалении другой или увеличение лимфатических узлов при удалении селезенки. Изменения способности к такого типа регенерации в зависимости от возраста показаны на рис. 8.80.Последние два способа отличаются местом регенерации, но механизмы их одинаковы: гиперплазия и гипертрофия (рис. 8.81)1.1 Гипертрофия (греч. hyper- + trophe пища, питание) — увеличение объема и массы органа тела или отдельной его части. Гиперплазия (греч. hyper- + plasis — образование, формирование) — увеличение числа структурных элементов тканей путем их избыточного новообразования. Это не только размножение клеток, но и увеличение цитоплазма-тических ультраструктур (изменяются в первую очередь митохондрии, миофиламенты, эндоплазматический ретикулум, рибосомы). Рис. 8.81. Схема, иллюстрирующая механизмы гипертрофии и гиперплазии: а — норма; б — гиперплазия; в — гипертрофия; г — комбинированное изменениеЭпителизация при заживлении ран с нарушенным эпителиальным покровом идет примерно одинаково, независимо от того, будет далее происходить регенерация органа путем эпиморфоза или нет. Эпидер-мальное заживление раны у млекопитающих в том случае, когда раневая поверхность высыхает с образованием корки, проходит следующим образом (рис. 8.82). Эпителий на краю раны утолщается вследствие увеличения объема клеток и расширения межклеточных пространств. Сгусток фибрина играет роль субстрата для миграции эпидермиса в глубь раны. В мигрирующих эпителиальных клетках нет митозов, одна- Рис. 8.82. Схема некоторых событий, происходящих при эпителизации кожной раны у млекопитающих: а — начало врастания эпидермиса под некротическую ткань, б — срастание эпидермиса и отделение струпа; 1 — соединительная ткань; 2 — эпидермис; 3 — струп; 4 — некротическая тканько они обладают фагоцитарной активностью. Клетки с противоположных краев вступают в контакт. Затем наступает кератинизация раневого эпидермиса и отделение корки, покрывающей рану. К моменту встречи эпидермиса противоположных краев в клетках, расположенных непосредственно вокруг края раны, наблюдается вспышка митозов, которая затем постепенно угасает.Восстановление отдельных мезодермальных тканей, таких как мышечная и скелетная, называют тканевой регенерацией. Для регенерации мышцы важно сохранение хотя бы небольших ее культей на обоих концах, а для регенерации кости необходима надкостница.Таким образом, существует множество различных способов или типов морфогенетических явлений при восстановлении утраченных и поврежденных частей организма. Различия между ними не всегда очевидны, и требуется более глубокое понимание этих процессов.При регенерации не всегда образуется точная копия удаленной структуры. В случае типичной регенерации восстанавливается утраченная часть правильной структуры (гомоморфоз), чего не происходит при атипичной регенерации. Примером последней является появление иной структуры на месте утраченной — гетероморфоз. Она может проявляться в виде гомеозисной регенерации, заключающейся в появлении антенны или конечности на месте глаза у членистоногих. Еще один вариант — гипоморфоз, регенерация с частичным замещением ампутированной структуры. Например, у ящерицы возникает шиловидная структура вместо конечности (рис. 8.83).К атипичной регенерации могут быть отнесены случаи изменения полярности структуры. Так, из короткого фрагмента планарии можно стабильно получать биполярную планарию. Встречается образование дополнительных структур, или избыточная регенерация. После надреза культи при ампутации головного отдела планарии возникает регенерация двух голов или более (рис. 8.84).Изучение регенерации касается не только внешних проявлений. Существует целый ряд аспектов, носящих проблемный и теоретический характер. К ним относятся вопросы регуляции и условий, в которых протекают восстановительные процессы, вопросы происхождения клеток, участвующих в регенерации, способности к регенерации у различных групп животных и особенностей восстановительных процессов у млекопитающих.Установлено, что при регенерации происходят такие процессы, как детерминация, дифференцировка и дифференциация, рост, морфоге- Рис. 8.83. Примеры атипичной регенерации: а — нормальная голова рака; б — формирование антенны вместо глаза; в — образование шиловидной структуры вместо конечности у саламандры. 1 — глаз; 2 — антенна; 3 — место ампутации; 4 — нервный ганглий Рис. 8.84. Примеры атипичной регенерации: а — биполярная планария; б — многоголовая планария, полученная после ампутации головы и нанесения насечек на культюнез, сходные с процессами, имеющими место в эмбриональном развитии. Данные, полученные к настоящему времени, указывают на то, что восстановление утраченных структур, по сути дела, осуществляется на основе той же самой программы развития, которая руководит формированием их у эмбриона, и на основе клеточных и системных механизмов развития. Однако при регенерации все процессы развития идут уже вторично, т.е. в сформированном организме, поэтому восстановление структур имеет ряд отличий и специфичных черт. Несомненно, что в ходе регенерации большое значение принадлежит системным механизмам — межклеточным и межзачатковым взаимодействиям, нервной и гуморальной регуляции. Так, при эпиморфозе конечности тритона сформированный в ходе эпителизации эпидермис стимулирует лизис подлежащих мезодермальных тканей. В его отсутствие или при образовании шрама регенерации не происходит. Клетки под сформированным эпидермисом дедифференцируются и формируют бластему. На этом этапе наблюдаются реципрокные индуктивные влияния между эпидермисом, который формирует апикальную эктодермальную шапочку, и мезодер-мальной бластемой. В ходе эмбрионального развития при формировании конечности осуществлялись сходные взаимодействия между мезодермаль-ной почкой конечности и апикальным эктодермальным гребнем. В ходе дедифференцировки в клетках подавляется активность типо-специфических генов, определяющих специализацию клетки, например генов MRF и Mif5 в мышечных волокнах. Затем активируются гены, необходимые для пролиферации клеток. Один из них msx1. На этой стадии врастающие в бластему нервные отростки и эпидермис продуцируют трофические и ростовые факторы, необходимые для пролиферации и выживания клеток бластемы. Среди них фактор роста фибробластов FGF-10. Этот же фактор необходим для пролиферации самого эпидермиса. Бластема, в свою очередь, синтезирует в ответ нейротрофические факторы, стимулирующие врастание нервов. Нервы нужны для формирования апикальной эктодермальной шапочки. Помимо этого бластема, так же как и апикальная эпидермальная шапочка, продуцирует FGF-8, который стимулирует врастание капилляров. Следует отметить наблюдаемые на этой стадии различия между регенерацией и эмбриональным развитием. Для реализации регенерации необходима иннервация. Без нее может проходить дедифференцировка клеток, но последующее развитие отсутствует. В период эмбрионального морфогенеза конечности (в ходе клеточных дифференцировок) нервы еще не сформированы. Помимо иннервации на ранней стадии регенерации требуется действие ферментов металлопротеиназ. Они разрушают компоненты ма-трикса, что позволяет клеткам разделиться (диссоциировать) и активно пролиферировать. Контактирующие между собой клетки не могут продолжать регенерацию и отвечать на действие ростовых факторов. Таким образом, в ходе регенерации наблюдаются все варианты межклеточных взаимодействий: путем выделения паракринных факторов, диффундирующих от одной клетки к другой, взаимодействия через матрикс и при непосредственном контакте клеточных поверхностей. В стадии дедифференцировки в клетках культи экспрессируются гомеозисные гены HoxD8 и HoxDlO, а с началом дифференцировки — гены HoxD9 и HoxD13. Как было показано в п. 8.3.4, эти же гены активно транскрибируются и в эмбриональном морфогенезе конечности. Важно отметить, что в ходе регенерации утрачивается дифферен-цировка клеток, а их детерминация сохраняется. Уже на стадии недифференцированной бластемы закладываются основные черты регенерирующей конечности. При этом не требуется активация генов, обеспечивающих спецификацию конечности (Tbx-5 для передней и Tbx-4 для задней). Конечность формируется в зависимости от локализации бластемы. Ее развитие происходит так же, как и в эмбриогенезе: сначала проксимальные отделы, а затем дистальные. Проксимально-дистальный градиент, от которого зависит, какие части растущего зачатка станут плечом, какие — предплечьем, а какие — кистью, задается градиентом белка Prod 1. Он локализован на поверхности клеток бластемы и его концентрация выше у основания конечности. Этот белок играет роль рецептора, а сигнальной молекулой (лигандом) для него является белок nAG. Он синтезируется шванновскими клетками, окружающими регенерирующий нерв. При отсутствии этого белка, который через лиганд-рецепторное взаимодействие запускает активацию необходимого для развития каскада генов, регенерации не происходит. Это объясняет феномен отсутствия восстановления конечности при перерезке нерва, а также и при врастании в бластему недостаточного количества нервных волокон. Интересно, что если нерв конечности тритона отвести под кожу основания конечности, то образуется дополнительная конечность. Если его отвести к основанию хвоста — стимулируется образование дополнительного хвоста. Отведение нерва на боковую область никаких дополнительных структур не вызывает. Все это привело к созданию концепции регене-рационных полей. Рис. 8.85. Эксперимент с поворотом бластемы конечности (пояснения в тексте)Аналогично процессу эмбриогенеза формируется и передне-задняя ось в поле развивающейся конечности. В формирующемся зачатке появляется зона поляризующей активности, определяющая асимметрию конечности. Повернув конец культи конечности на 180°, можно получить конечность с зеркальным удвоением пальцев (рис. 8.85).Таким образом, справедливо утверждение, что формирование конечности происходит в поле органа, а бластема является саморегулирующейся системой. Наряду с вышесказанным, доказательством этому служат результаты, полученные в серии экспериментов по пересадке бластемы передней конечности на бластему середины бедра (рис. 8.86). При пересадке в регене-рационное поле другой конечности трансплантат располагается в соответствии с полученной позиционной информацией (градиенты веществ): бластема плеча смещается к середине бедра, предплечья — к голени, запястья — к лапке. Развитие трансплантированной бластемы в соответствующую часть передней конечности происходит в соответствии с ее детерминацией, которая определяется уровнем ампутации.Помимо межклеточных и индукционных взаимодействий, которые оказываются менее разнообразными, чем в ходе эмбрионального морфогенеза, на регенерациюзначительное влияние оказывает нервная и гуморальная регуляция. Это вполне объяснимо тем, что регенерация осуществляется в уже сформированном организме, где основными регулирующими механизмами являются именно последние. Среди гуморальных влияний следует остановиться на действии гормонов. Альдостерон, гормоны щитовидной железы и гипофиза оказывают стимулирующее влияние на восстановление утраченных Рис. 8.86. Опыты по пересадке бластемы передней конечности в поле задней (пояснения в тексте)структур. Сходное действие имеют и метаболиты, выделяемые поврежденной тканью и транспортируемые плазмой крови или передающиеся через межклеточную жидкость. Именно поэтому дополнительное повреждение в некоторых случаях ускоряет процесс регенерации. Помимо перечисленного на регенерацию оказывают влияние и другие факторы, среди которых температура, при которой происходит восстановление, возраст животного, функционирование органа, стимулирующее регенерацию, и в определенных ситуациях изменение электрического заряда в регенерате. Установлено, что в конечности амфибий после ампутации и в процессе регенерации происходят реальные изменения электрической ак- тивности. При проведении электрического тока через ампутированную конечность у взрослых шпорцевых лягушек наблюдается усиление регенерации передних конечностей. В регенератах увеличивается количество нервной ткани, из чего делается вывод, что электрический ток стимулирует врастание нервов в края конечностей, в норме не регенерирующих. Попытки стимулировать подобным образом восстановление конечностей у млекопитающих оказались безуспешными. Под действием электрического тока или при сочетании действия электрического тока с фактором роста нервов удавалось получить у крысы только разрастание скелетной ткани в виде хрящевых и костных мозолей, которые не походили на нормальные элементы скелета конечностей. Один из наиболее интригующих в теории регенерации — вопрос об ее клеточных источниках. Откуда берутся или как возникают недифференцированные клетки бластемы, морфологически сходные с мезен-химными? В настоящее время говорят о трех возможных источниках регенерации. Первый — это дедифференцированные клетки, второй — региональные стволовые клетки и третий — стволовые клетки из других структур, мигрировавшие к месту регенерации. Большинство исследователей признают дедифференцировку и метаплазию при регенерации хрусталика у амфибий. Теоретическое значение этой проблемы заключается в допущении возможности или невозможности изменений клеткой ее программы до такой степени, что она возвращается в состояние, когда снова способна делиться и репро-граммировать свой синтетический аппарат. Наличие региональных стволовых клеток установлено к настоящему времени во многих тканях: в мышцах, кости, эпидермисе кожи, печени, сетчатке и других. Такие клетки обнаружены даже в нервной ткани — в определенных зонах головного мозга. Во многих случаях считают, что источником, из которого образуются дифференцированные клетки в ходе регенерации, являются именно они (регенеративная медицина, регенеративная ветеринария). Предполагается, что по мере увеличения возраста особи численность популяций региональных стволовых клеток сокращается. Если же в органе не хватает своих региональных стволовых клеток, то в него могут мигрировать клетки из других и дать начало нужной ткани. Недавно показано, что стволовые клетки, изолированные из одной взрослой ткани, могут дать начало зрелым клеткам других клеточных линий, независимо от назначения классического зародышевого слоя. Так, эндотелий крупных магистральных артерий не имеет собственных запасов стволовых клеток. Его обновление происходит за счет стволовых клеток костного мозга, поступающих в кровоток. Однако сравнительная неэффективность подобных преобразований in vivo (в организме), даже при наличии повреждения ткани, ставит вопрос о том, имеет ли этот механизм физиологическое значение.Интересно, что среди взрослых стволовых клеток способность к перемене линий наиболее велика у стволовых клеток, которые могут быть культивируемы в среде в течение длительного времени.Если удастся решить вопрос трансформации клеточных линий, то вполне возможным станет использование этих технологий в репаратив-ной медицине для лечения широкого круга болезней. Однако, несмотря на достижения биологии последних лет, в проблеме регенерации еще остается очень много нерешенных вопросов.

Регенера́ция (восстановление) - способность живых организмов со временем восстанавливать повреждённые ткани, а иногда и целые потерянные органы. Регенерацией также называется восстановление целого организма из его искусственно отделённого фрагмента (например, восстановление гидры из небольшого фрагмента тела или диссоциированных клеток). У протистов регенерация может проявляться в восстановлении утраченных органоидов или частей клетки.

Бывает физиологическая и репаративная. Регенерацию в процессе нормальной жизнедеятельности организма, обычно не связанную с повреждениями или утратой, называют физиологической. В каждом организме на протяжении всей его жизни постоянно идут процессы восстановления и обновления. У человека, например, постоянно обновляется наружный слой кожи. Птицыпериодически сбрасывают перья и отращивают новые, а млекопитающие сменяют шерстный покров. У листопадных деревьев листья ежегодно опадают и заменяются свежими.

Примеромфизиологическойрегенерациинавнутриклеточномуровнеявляютсяпроцессывосстановлениясубклеточныхструктурвклеткахвсехтканейиорганов. Значениеееособенновеликодлятакназываемых «вечных» тканей, утратившихспособностькрегенерациипутемделенияклеток. Впервуюочередьэтоотноситсякнервнойткани.

Примерамифизиологическойрегенерациинаклеточномитканевомуровняхявляютсяобновлениеэпидермисакожи, роговицыглаза, эпителияслизистойкишечника, клетокпериферическойкровиидр. Обновляютсяпроизводныеэпидермиса - волосыиногти. Этотакназываемая пролиферативная регенерация, т.е. восполнениечисленностиклетокзасчетихделения.

Регенерация. Виды регенерации. Репаративная регенерация, ее значение. Способы репаративной регенерации (эпиморфоз, морфолаксис). Гомоморфоз, гипоморфоз, гетероморфоз, гиперморфоз. Примеры.

Репаративной называют регенерацию, происходящую после повреждения или утраты какой-либо части тела. Выделяют типичную и атипичную репаративную регенерацию.

При типичной регенерации утраченная часть замещается путём развития точно такой же части. Причиной утраты может быть внешнее воздействие (например, ампутация), или же животное намеренно отрывает часть своего тела (автотомия), как ящерица, обламывающая часть своего хвоста, спасаясь от врага.

При атипичной регенерации утраченная часть замещается структурой, отличающейся от первоначальной количественно или качественно. У регенерировавшей конечности головастика число пальцев может оказаться меньше исходного, а у креветки вместо ампутированного глаза может вырасти антенна.

Эпиморфо́з - вариант процесса регенерации органа при потере части органа, характеризующийся, в отличие от морфаллаксиса, отрастанием недостающей части органа без изменения формы и размера оставшейся части органа.

Морфаллаксис (от греч. morphe - вид, форма и allaxis - изменение), один из способов регенерации у животных, при котором образование целого организма или его органа из оставшегося после повреждения участка тела или органа происходит путём перестройки этого участка (ср. Эпиморфоз). М. наблюдается у многих кишечнополостных, плоских и кольчатых червей, членистоногих, а также у оболочников.

Гомоморфоз (полная регенерация, реституция) - завершение процесса регенерации удаленного органа восстановлением идентичного по форме, размерам и функциональности органа.

Гетероморфо́з (неполная регенерация, реституция) - завершение процесса регенерации удаленного органа восстановлением органа, отличающегося от исходного функциональностью (образование другого органа).

Гиперморфоз (от гипер... и греч. morphe - вид, форма), гипертелия, сверхспециализация, тип филогенетического развития, ведущий к нарушению отношений организма со средой вследствие гипертрофииотдельных органов (например, клыков у ископаемого саблезубого тигра - махайрода, рогов у гигантского оленя, клыков у современного кабана - бабируссы и т.п.). Частный случай Г. - общее увеличение размеров тела, ведущее к нарушению корреляций отдельных органов

Регенерация. Виды регенерации. Репаративная регенерация. Морфолаксис. Эндоморфоз (регенерационная гипертрофия, компенсаторная гипертрофия). Примеры. Проявление регенерационной способности в филогенезе. Применение в медицине. Факторы, влияющие на процесс регенерации.

Эндоморфоз – этовосстановление, идущеевнутриоргана.Приэтомвосстанавливаетсянеформа, а массаоргана.Регенерацияпотипуэндоморфозаначинается с заживленияраны, а затемпроисходитувеличениеоставшейсячастиорганазасчетразмноженияклеток и ихгипертрофии.

Регенерационная гипертрофия относится к внутренним органам. Этот способ регенерации заключается в увеличении размеров остатка органа без восстановления исходной формы. Иллюстрацией служит регенерация печени позвоночных, в том числе млекопитающих. При краевом ранении печени удаленная часть органа никогда не восстанавливается. Раневая поверхность заживает. В то же время внутри оставшейся части усиливается размножение клеток (гиперплазия) и в течение двух недель после удаления 2/3 печени восстанавливаются исходные масса и объем, но не форма. Внутренняя структура печени оказывается нормальной, дольки имеют типичную для них величину. Функция печени также возвращается к норме.
Компенсаторная гипертрофия заключается в изменениях в одном из органов при нарушении в другом, относящемся к той же системе органов. Примером является гипертрофия в одной из почек при удалении другой или увеличение лимфатических узлов при удалении селезенки.

Регенерация в медицине. Различают физиологическую, репаративную и патологическую регенерацию. При травмах и др. патологических состояниях, которые сопровождаются массовой гибелью клеток, восстановление тканей осуществляется за счёт репаративнои (восстановительной) регенерации. Если в процессе репаративной регенерации утраченная часть замещается равноценной, специализированной тканью, говорят о полной регенерации (реституции); если на месте дефекта разрастается неспециализированная соединительная ткань,- о неполной регенерации (заживлении посредством рубцевания). В ряде случаев при субституции функция восстанавливается за счёт интенсивного новообразования ткани (аналогичной погибшей) в неповреждённой части органа. Это новообразование происходит путём либо усиленного размножения клеток, либо за счёт внутриклеточной регенерации- восстановления субклеточных структур при неизменённом числе клеток (сердечная мышца, нервная ткань). Возраст, особенности обмена веществ, состояние нервной и эндокринной систем, питание, интенсивность кровообращения в повреждённой ткани, сопутствующие заболевания могут ослабить, усилить или качественно изменить процесс регенерации. В некоторых случаях это приводит к патологической регенерации. Её проявления: длительно незаживающие язвы, нарушения срастания переломов костей, избыточные разрастания тканей или переход одного типа ткани в другой. Лечебные воздействия на процесс регенерации заключаются в стимуляции полной и предотвращении патологической регенерации.

процесс регенерации зависит не только от уровня организации животного, но и от многих других факторов и характеризуется значит, изменчивостью. Неправильно также утверждение, что способность к регенерации закономерно падает с возрастом; она может и повышаться в процессе онтогенеза, но в период старости часто наблюдают её снижение. За последнюю четверть века показано, что, хотя у млекопитающих и человека целые наружные органы не регенерируют, внутренние их органы, а также мышцы, скелет, кожа способны к регенерации, которую изучают на органном, тканевом, клеточном и субклеточном уровнях

. 71. Характеристика трансплантации. Виды трансплантации- аутотрансплантация, аллотрансплантация, ксенотрансплантация. Пути преодоления тканевой несовместимости. Значение для медицины.

Трансплантациейназываетсяпересадкаилиприживлениеорганов и тканей.Пересаживаемыйучастокоргананазываетсятрансплантатом.Организм, откоторогоберуттканьдляпересадки, являетсядонором; организм, которомупересаживаюттрансплантат - реципиентом.

Различаютаутотрансплантацию, когдапересадкаосуществляется на другуючастьтелатогожеорганизма, аллотрансплантацию, когдапроизводятпересадкуотоднойособидругой, принадлежащейтомужевиду, и ксенотрансплантацию, когдадонор и реципиентотносятся к разнымвидам.

Трансплантация в медицинскойпрактике.

В техслучаях, когдаорганнеможетрегенерировать, нооннеобходим, остаетсяодинметод – заменитьеготакимжеестественнымилиискусственныморганом.

Припластическихоперациях, проводимых с цельювосстановленияформы и функциикакого-либоорганаилидеформированнойповерхноститела, распространенапересадкакожи, хряща, мышц, сухожилий, кровеносныхсосудов, нервов, сальника.Значительнуючастьпластическихоперацийсоставляюткосметические, направленные на восстановлениедеформированныхчастейлица.Пластическимиоперациямиустраняютсяуродствалица, например «заячьягуба», «волчьяпасть».Операцииповосстановлениюгортани, пищевода, половыхорганов, дефектов в брюшной и груднойстенках, черепе, такжеявляютсяпластическими.

Припластическихоперацияхпользуютсяпреимущественноаутотрансплантацией.Длятогочтобытрансплантатприжился, необходимообеспечитьегопитанием на новомместе.С этойцельюдляпересадкикожибылразработанметодкруглогостебля, обеспечивающийпитаниекожноголоскута на старомместе.Такжебылсозданметодпересадкироговицы, взятойоттрупа, с цельюлеченияслепоты, вызваннойповреждениями и язвами на роговице.Благодаряоперациям, проведеннымпоэтомуметоду, возвращенозрениемногимтысячамлюдей.Пересадкароговицыпротекаетбезосложнений, которыесопровождаютпересадкудругихорганов, таккакроговицанесодержиткровеносныхкапилляров и, следовательно, в неёнепопадаютклеткииммуннойсистемыкрови.

Посколькуабсолютноточноподобратьдонора и реципиентаповсемантигенамневозможно, возникаетпроблемаподавленияиммуннойреакцииотторжения.Большоезначение в этомимеетявлениеиммунологическойтолерантности к чужероднымклеткам.Этоявлениебылооткрыто на разныхорганизмахнезависимодруготдруга.Иммуннаясистема, направленнаяпротивлюбыхгенетическичужеродныхвеществ и клеток, защищаеторганизмотмикробов и вирусов.Однакоэтосвойство, выработанное в процесседлительнойэволюции, обращаетсяпротив интереса человека в случаепересадкиорганов и тканей.В этомслучае, а такжеприаутоиммунныхзаболеваниях, передученымивсталазадачаподавленияиммунитета – иммунодепрессии.Этодостигаетсяразличнымиспособами: подавлениемактивностииммуннойсистемы, облучением, введениемспециальнойантилимфатическойсыворотки, гормоновкорынадпочечников.

Применяюттакжеразличныехимическиепрепараты – антидепрессанты.

72. Эксплантация. Современные направления (использование стволовых клеток, клонирование)

Эксплантация – культивированиеизолированныхорганов и тканей.

Культивированиеизолированныхоргановвнеорганизмабазируется на том, что в органах, отделенныхотцелогоорганизма, приопределенныхусловияхмогутосуществлятьсяпроцессыжизнедеятельности.

Регенерация (от лат. regeneratio - возрождение) - процесс восстановления организмом утраченных или поврежденных структур. Регенерация поддерживает строение и функции организма, его целостность. Различают два вида регенерации: физиологическую и репаративную. Восстановление органов, тканей, клеток или внутриклеточных структур после разрушения их в процессе жизнедеятельности организма называют физиологической регенерацией. Восстановление структур после травмы или действия других повреждающих факторов называют репаративной регенерацией. При регенерации происходят такие процессы, как детерминация, дифференцировка, рост, интеграция и др., сходные с процессами, имеющими место в эмбриональном развитии. Однако при регенерации все они идут уже вторично, т.е. в сформированном организме.

Физиологическая регенерация представляет собой процесс обновления функционирующих структур организма. Благодаря физиологической регенерации поддерживается структурный гомеостаз и обеспечивается возможность постоянного выполнения органами их функций. С общебиологической точки зрения, физиологическая регенерация, как и обмен веществ, является проявлением такого важнейшего свойства жизни, как самообновление.

Примером физиологической регенерации на внутриклеточном уровне являются процессы восстановления субклеточных структур в клетках всех тканей и органов. Значение ее особенно велико для так называемых «вечных» тканей, утративших способность к регенерации путем деления клеток. В первую очередь это относится к нервной ткани.

Примерами физиологической регенерации на клеточном и тканевом уровнях являются обновление эпидермиса кожи, роговицы глаза, эпителия слизистой кишечника, клеток периферической крови и др. Обновляются производные эпидермиса - волосы и ногти. Это так называемая пролиферативная регенерация, т.е. восполнение численности клеток за счет их деления. Во многих тканях существуют специальные камбиальные клетки и очаги их пролиферации. Это крипты в эпителии тонкой кишки, костный мозг, пролиферативные зоны в эпителии кожи. Интенсивность клеточного обновления в перечисленных тканях очень велика. Это так называемые «лабильные» ткани. Все эритроциты теплокровных животных, например, сменяются за 2-4 мес, а эпителий тонкой кишки полностью сменяется за 2 сут. Это время требуется для перемещения клетки из крипты на ворсинку, выполнения ею функции и гибели. Клетки таких органов, как печень, почка, надпочечник и др., обновляются значительно медленнее. Это так называемые «стабильные» ткани.

Об интенсивности пролиферации судят по количеству митозов, приходящихся на 1000 подсчитанных клеток. Если учесть, что сам митоз в среднем длится около 1 ч, а весь митотаческий цикл в соматических клетках в среднем протекает 22-24 ч, то становится ясно, что для определения интенсивности обновления клеточного состава тканей необходимо подсчитать количество митозов в течение одних или нескольких суток. Оказалось, что количество делящихся клеток не одинаково в разные часы суток. Так был открыт суточный ритм клеточных делений, пример которого изображен на рис. 8.23.

Рис. 8.23. Суточные изменения митотического индекса (МИ)

в эпителии пищевода (I ) и роговицы (2 ) мышей.

Митотический индекс выражен в промилле (0 / 00), отражающем число митозов

в тысяче подсчитанных клеток


Суточный ритм количества митозов обнаружен не только в нормальных, но и в опухолевых тканях. Он является отражением более общей закономерности, а именно ритмичности всех функций организма. Одна из современных областей биологии - хронобиология - изучает, в частности, механизмы регуляции суточных ритмов митотической активности, что имеет весьма важное значение для медицины. Существование самой суточной периодичности количества митозов указывает на регулируемость физиологической регенерации организмом. Кроме суточных существуют лунные и годичные циклы обновления тканей и органов.

В физиологической регенерации выделяют две фазы: разрушительную и восстановительную. Полагают, что продукты распада части клеток стимулируют пролиферацию других. Большую роль в регуляции клеточного обновления играют гормоны.

Физиологическая регенерация присуща организмам всех видов, но особенно интенсивно она протекает у теплокровных позвоночных, так как у них вообще очень высока интенсивность функционирования всех органов по сравнению с другими животными.

Репаративная (от лат. reparatio - восстановление) регенерация наступает после повреждения ткани или органа. Она очень разнообразна по факторам, вызывающим повреждения, по объемам повреждения, по способам восстановления. Механическая травма, например оперативное вмешательство, действие ядовитых веществ, ожоги, обморожения, лучевые воздействия, голодание, другие болезнетворные агенты,- все это повреждающие факторы. Наиболее широко изучена регенерация после механической травмы. Способность некоторых животных, таких, как гидра, планария, некоторые кольчатые черви, морские звезды, асцидия и др., восстанавливать утраченные органы и части организма издавна изумляла ученых. Ч. Дарвин, например, считал удивительными способность улитки воспроизводить голову и способность саламандры восстанавливать глаза, хвост и ноги именно в тех местах, где они отрезаны.

Объем повреждения и последующее восстановление бывают весьма различными. Крайним вариантом является восстановление целого организма из отдельной малой его части, фактически из группы соматических клеток. Среди животных такое восстановление возможно у губок и кишечнополостных. Среди растений возможно развитие целого нового растения даже из одной соматической клетки, как это получено на примере моркови и табака. Такой вид восстановительных процессов сопровождается возникновением новой морфогенетической оси организма и назван Б.П. Токиным «соматическим эмбриогенезом», ибо во многом напоминает эмбриональное развитие.

Существуют примеры восстановления больших участков организма, состоящих из комплекса органов. В качестве примера служат регенерация ротового конца у гидры, головного конца у кольчатого червя и восстановление морской звезды из одного луча (рис. 8.24). Широко распространена регенерация отдельных органов, например конечности у тритона, хвоста у ящерицы, глаз у членистоногих. Заживление кожных покровов, ран, повреждений костей и других внутренних органов является менее объемным процессом, но не менее важным для восстановления структурно-функциональной целостности организма. Особый интерес представляет способность зародышей на ранних стадиях развития восстанавливаться после значительной утраты материала. Эта способность была последним аргументом в борьбе между сторонниками преформизма и эпигенеза и привела в 1908 г. Г. Дриша к концепции эмбриональной регуляции.


Рис. 8.24. Регенерация комплекса органов у некоторых видов беспозвоночных животных. А - гидра;Б - кольчатый червь; В - морская звезда

(пояснение см. в тексте)

Существует несколько разновидностей или способов репаративной регенерации. К ним относят эпиморфоз, морфаллаксис, заживление эпителиальных ран, регенерационную гипертрофию, компенсаторную гипертрофию.

Эпителизация при заживлении ран с нарушенным эпителиальным покровом идет примерно одинаково, независимо от того, будет далее происходить регенерация органа путем эпиморфоза или нет. Эпидермальное заживление раны у млекопитающих в том случае, когда раневая поверхность высыхает с образованием корки, проходит следующим образом (рис. 8.25). Эпителий на краю раны утолщается вследствие увеличения объема клеток и расширения межклеточных пространств. Сгусток фибрина играет роль субстрата для миграции эпидермиса в глубь раны. В мигрирующих эпителиальных клетках нет митозов, однако они обладают фагоцитарной активностью. Клетки с противоположных краев вступают в контакт. Затем наступает кератинизация раневого эпидермиса и отделение корки, покрывающей рану.

Рис. 8.25. Схема некоторых событий, происходящих

при эпителизации кожной раны у млекопитающих.

А- начало врастания эпидермиса под некротическую ткань; Б- срастание эпидермиса и отделение струпа:

1 -соединительная ткань, 2- эпидермис, 3- струп, 4- некротическая ткань

К моменту встречи эпидермиса противоположных краев в клетках, расположенных непосредственно вокруг края раны, наблюдается вспышка митозов, которая затем постепенно падает. По одной из версий, эта вспышка вызвана понижением концентрации ингибитора митозов - кейлона.

Эпиморфоз представляет собой наиболее очевидный способ регенерации, заключающийся в отрастании нового органа от ампутационной поверхности. Регенерация конечности тритона и аксолотля изучена детально. Выделяют регрессивную и прогрессивную фазы регенерации. Регрессивная фаза начинается с заживления раны, во время которого происходят следующие основные события: остановка кровотечения, сокращение мягких тканей культи конечности, образование над раневой поверхностью сгустка фибрина и миграция эпидермиса, покрывающего ампутационную поверхность.

Затем начинается разрушение остеоцитов на дистальном конце кости и других клеток. Одновременно в разрушенные мягкие ткани проникают клетки, участвующие в воспалительном процессе, наблюдается фагоцитоз и местный отек. Затем вместо образования плотного сплетения волокон соединительной ткани, как это происходит при заживлении ран у млекопитающих, в области под раневым эпидермисом утрачиваются дифференцированные ткани. Характерна остеокластическая эрозия кости, что является гистологическим признаком дедифференцировки. Раневой эпидермис, уже пронизанный регенерирующими нервными волокнами, начинает быстро утолщаться. Промежутки между тканями все более заполняются мезенхимоподобными клетками. Скопление мезенхимных клеток под раневым эпидермисом является главным показателем формирования регенерационной бластемы. Клетки бластемы выглядят одинаково, но именно в этот момент закладываются основные черты регенерирующей конечности.

Затем начинается прогрессивная фаза, для которой наиболее характерны процессы роста и морфогенеза. Длина и масса регенерационной бластемы быстро увеличиваются. Рост бластемы происходит на фоне идущего полным ходом формирования черт конечности, т.е. ее морфогенеза. Когда форма конечности в общих чертах уже сложилась, регенерат все еще меньше нормальной конечности. Чем крупнее животное, тем больше эта разница в размерах. Для завершения морфогенеза требуется время, по истечении которого регенерат достигает размеров нормальной конечности.

Некоторые стадии регенерации передней конечности у тритона после ампутации на уровне плеча показаны на рис. 8.26. Время, необходимое для полной регенерации конечности, варьирует в зависимости от размера и возраста животного, а также от температуры, при которой она протекает.

Рис. 8.26. Стадии регенерации передней конечности у тритона

У молодых личинок аксолотлей конечность может регенерировать за 3 нед, у взрослых тритонов и аксолотлей за 1-2 мес, а у наземных амбистом для этого требуется около 1 года.

При эпиморфной регенерации не всегда образуется точная копия удаленной структуры. Такую регенерацию называют атипичной. Существует много разновидностей атипичной регенерации. Гипоморфоз - регенерация с частичным замещением ампутированной структуры. Так, у взрослой шпорцевой лягушки возникает шиловидная структура вместо конечности. Гетероморфоз - появление иной структуры на месте утраченной. Это может проявляться в виде гомеозисной регенерации, заключающейся в появлении конечности на месте антенн или глаза у членистоногих, а также в изменении полярности структуры. Из короткого фрагмента планарии можно стабильно получать биполярную планарию (рис. 8.27).

Встречается образование дополнительных структур, или избыточная регенерация. После надреза культи при ампутации головного отдела планарии возникает регенерация двух голов или более (рис. 8.28). Можно получить больше пальцев при регенерации конечности аксолотля, повернув конец культи конечности на 180°. Дополнительные структуры являются зеркальным отражением исходных или регенерировавших структур, рядом с которыми они расположены (закон Бэйтсона).

Рис. 8.27. Биполярная планария

Морфаллаксис - это регенерация путем перестройки регенерирующего участка. Примером служит регенерация гидры из кольца, вырезанного из середины ее тела, или восстановление планарии из одной десятой или двадцатой ее части. На раневой поверхности в этом случае не происходит значительных формообразовательных процессов. Отрезанный кусочек сжимается, клетки внутри него перестраиваются, и возникает целая особь

уменьшенных размеров, которая затем растет. Этот способ регенерации впервые описал Т. Морган в 1900 г. В соответствии с его описанием морфаллаксис осуществляется без митозов. Нередко имеет место сочетание эпиморфного роста на месте ампутации с реорганизацией путем морфаллаксиса в прилежащих частях тела.

Рис. 8.28. Многоголовая планария, полученная после ампутации головы

и нанесения насечек на культю

Регенерационная гипертрофия относится к внутренним органам. Этот способ регенерации заключается в увеличении размеров остатка органа без восстановления исходной формы. Иллюстрацией служит регенерация печени позвоночных, в том числе млекопитающих. При краевом ранении печени удаленная часть органа никогда не восстанавливается. Раневая поверхность заживает. В то же время внутри оставшейся части усиливается размножение клеток (гиперплазия) и в течение двух недель после удаления 2/3 печени восстанавливаются исходные масса и объем, но не форма. Внутренняя структура печени оказывается нормальной, дольки имеют типичную для них величину. Функция печени также возвращается к норме.

Компенсаторная гипертрофия заключается в изменениях в одном из органов при нарушении в другом, относящемся к той же системе органов. Примером является гипертрофия в одной из почек при удалении другой или увеличение лимфатических узлов при удалении селезенки.

Последние два способа отличаются местом регенерации, но механизмы их одинаковы: гиперплазия и гипертрофия.

Восстановление отдельных мезодермальных тканей, таких, как мышечная и скелетная, называют тканевой регенерацией. Для регенерации мышцы важно сохранение хотя бы небольших ее культей на обоих концах, а для регенерации кости необходима надкостница. Регенерация путем индукции происходит в определенных мезодермальных тканях млекопитающих в ответ на действие специфических индукторов, которые вводят внутрь поврежденной области. Этим способом удается получить полное замещение дефекта костей черепа после введения в него костных опилок.

Таким образом, существует множество различных способов или типов морфогенетических явлений при восстановлении утраченных и поврежденных частей организма. Различия между ними не всегда очевидны, и требуется более глубокое понимание этих процессов.

Изучение регенерационных явлений касается не только внешних проявлений. Существует целый ряд вопросов, носящих проблемный и теоретический характер. К ним относятся вопросы регуляции и условий, в которых протекают восстановительные процессы, вопросы происхождения клеток, участвующих в регенерации, способности к регенерации у различных групп, животных и особенностей восстановительных процессов у млекопитающих.

Установлено, что в конечности амфибий после ампутации и в процессе регенерации происходят реальные изменения электрической активности. При проведении электрического тока через ампутированную конечность у взрослых шпорцевых лягушек наблюдается усиление регенерации передних конечностей. В регенератах увеличивается количество нервной ткани, из чего делается вывод, что электрический ток стимулирует врастание нервов в края конечностей, в норме не регенерирующих.

Попытки стимулировать подобным образом регенерацию конечностей у млекопитающих оказались безуспешными. Так, под действием электрического тока или при сочетании действия электрического тока с фактором роста нервов удавалось получить у крысы только разрастание скелетной ткани в виде хрящевых и костных мозолей, которые не походили на нормальные элементы скелета конечностей.

Несомненна регуляция регенерационных процессов со стороны нервной системы. При тщательной денервации конечности во время ампутации эпиморфная регенерация полностью подавляется и бластема никогда не образуется. Были проведены интересные опыты. Если нерв конечности тритона отвести под кожу основания конечности, то образуется дополнительная конечность. Если его отвести к основанию хвоста - стимулируется образование дополнительного хвоста. Отведение нерва на боковую область никаких дополнительных структур не вызывает. Эти эксперименты привели к созданию концепции регенерационных полей. .

Было установлено, что для инициации регенерации решающим является число нервных волокон. Тип нерва роли не играет. Влияние нервов на регенерацию связывается с трофическим действием нервов на ткани конечностей.

Получены данные в пользу гуморальной регуляции регенерационных процессов. Особенно распространенной моделью для изучения этого является регенерирующая печень. После введения нормальным интактным животным сыворотки или плазмы крови от животных, подвергшихся удалению печени, у первых наблюдалась стимуляция митотической активности клеток печени. Напротив, при введении травмированным животным сыворотки от здоровых животных получали снижение количества митозов в поврежденной печени. Эти опыты могут свидетельствовать как о присутствии в крови травмированных животных стимуляторов регенерации, так и о присутствии в крови интактных животных ингибиторов клеточного деления. Объяснение результатов опытов затрудняется необходимостью учитывать иммунологический эффект инъекций.

Важнейшим компонентом гуморальной регуляции компенсаторной и регенерационной гипертрофии является иммунологический ответ. Не только частичное удаление органа, но и многие воздействия вызывают возмущения в иммунном статусе организма, появление аутоантител и стимуляцию процессов клеточной пролиферации.

Большие разногласия существуют по вопросу о клеточных источниках регенерации. Откуда берутся или как возникают недифференцированные клетки бластемы, морфологически сходные с мезенхимными? Существует три предположения.

1. Гипотеза резервных клеток подразумевает, что предшественниками регенерационной бластемы являются так называемые резервные клетки, которые останавливаются на некоем раннем этапе своей дифференцировки и не участвуют в процессе развития до получения стимула к регенерации.

2. Гипотеза временной дедифференцировки, или модуляции, клеток предполагает, что в ответ на регенерационный стимул дифференцированные клетки могут утрачивать признаки специализации, но затем снова дифференцируются в тот же клеточный тип, т.е., потеряв на время специализацию, они не утрачивают детерминацию.

3. Гипотеза полной дедифференцировки специализированных клеток до состояния, сходного с мезенхимными клетками и с возможной последующей трансдифференцировкой или метаплазией, т.е. превращением в клетки другого типа, полагает, что в этом случае клетка утрачивает не только специализацию, но и детерминацию.

Современные методы исследования не позволяют с абсолютной достоверностью доказать все три предположения. Тем не менее абсолютно верно, что в культях пальцев аксолотля происходит высвобождение хондроцитов из окружающего матрикса и миграция их в регенерационную бластему. Дальнейшая их судьба не определена. Большинство исследователей признают дедифференцировку и метаплазию при регенерации хрусталика у амфибий. Теоретическое значение этой проблемы заключается в допущении возможности или невозможности изменений клеткой ее программы до такой степени, что она возвращается в состояние, когда снова способна делиться и репрограммироватьсвой синтетический аппарат. Например, хондроцит становится миоцитом или наоборот.

Способность к регенерации не имеет однозначной зависимости от уровня организации, хотя давно уже было замечено, что более низко организованные животные обладают лучшей способностью к регенерации наружных органов. Это подтверждается удивительными примерами регенерации гидры, планарий, кольчатых червей, членистоногих, иглокожих, низших хордовых, например асцидий. Из позвоночных наилучшей регенерационной способностью обладают хвостатые земноводные. Известно, что разные виды одного и того же класса могут сильно отличаться по способности к регенерации. Кроме того, при изучении способности к регенерации внутренних органов оказалось, что она значительно выше у теплокровных животных, например у млекопитающих, по сравнению с земноводными.

Регенерация у млекопитающих отличается своеобразием. Для регенерации некоторых наружных органов нужны особые условия. Язык, ухо, например, не регенерируют при краевом повреждении. Если же нанести сквозной дефект через всю толщу органа, восстановление идет хорошо. В некоторых случаях наблюдали регенерацию сосков даже при ампутации их по основанию. Регенерация внутренних органов может идти очень активно. Из небольшого фрагмента яичника восстанавливается целый орган. Об особенностях регенерации печени уже было сказано выше. Различные ткани млекопитающих тоже хорошо регенерируют. Есть предположение, что невозможность регенерации конечностей и других наружных органов у млекопитающих носит приспособительный характер и обусловлена отбором, поскольку при активном образе жизни нежные морфогенетические процессы затрудняли бы существование. Достижения биологии в области регенерации успешно применяются в медицине. Однако в проблеме регенерации очень много нерешенных вопросов.