Аппарат Гольджи (комплекс Гольджи) мембранная структура эукариотической клетки, органелла, в основном предназначенная для выведения веществ, синтезированных. Строение клетки. Комплекс Гольджи. Эндоплазматическая сеть. Лизосомы. Клеточные включения


Смотреть похожие

Код для вставки

ВКонтакте

Одноклассники

Телеграм

Рецензии

Добавить свою рецензию


Слайд 2

План урока

Органоиды клетки Немембранные органоиды Мембранные органоиды Клетки прокариот и эукариот

Слайд 3

Органоидами (органеллами)

Слайд 4

ОРГАНОИДЫ КЛЕТКИ НЕМЕМБРАННЫЕ МЕМБРАННЫЕ Одномембранные Двумембранные Рибосомы Клеточный центр Микротрубочки Микрофиламенты Хромосомы Эндоплазматическая сеть Комплекс Гольджи Лизосомы Вакуоли Митохондрии Пластиды Плазмолемма

Слайд 5

Рибосома

Важнейший органоид живой клетки сферической или слегка овальной формы, диаметром 100-200 ангстрем, состоящий из большой и малой субъединиц Функция – синтез белка Содержит рРНК

Слайд 6

Схема строения рибосомы

1 - малая субъединица 2 - иРНК 3 - тРИК 4 - аминокислота 5 - большая субъединица 6 - мембрана эндоплазматической сети 7 - синтезируемая полипептидная цепь.

Слайд 7

Полирибосома

Слайд 8

Клеточный центр (центросома)

Входит в состав митотического аппарата клетки Имеет ДНК и РНК

Слайд 9

Микротрубочки

Микротрубочки обозначены зеленым цветом

Слайд 10

Микрофиламенты

Участие в формировании цитоскелета клетки, амебоидном движении и др. Нуклеиновых кислот нет Микрофиламенты окрашены в красный цвет

Слайд 11

Хромосомы

Органоиды ядра эукариот, каждая хромосома образована одной молекулой ДНК и молекулами белков Вспомните, что вам известно о хромосомах?

Слайд 12

Плазмолемма

жидкостно-мозаическую модель, где липидные слои мембраны пронизаны белковыми молекулами обеспечивает разграничительную функцию по отношению к внешней для клетки среде выполняет транспортную функцию Вспомните, что вам известно о плазмолемме (биомембране)? membranes.nbi.dk/.../News_engl.html

Слайд 13

Эндоплазматическая сеть (ЭПС)

Система мембран, образующих канальца, пузырьки, цистерны, трубочки Соединена с плазмолеммой и ядерной мембраной. Транспорт веществ в клетке Разделение клетки на отсеки

Слайд 14

Слайд 16

Ками́лло Го́льджи(7 июля 1843 - 21 января 1926)

итальянский врач и учёный, лауреат Нобелевской премии по физиологии и медицине в 1906 году (совместно с Сантьяго Рамон-и-Кахалем).

Слайд 17

Лизосомы

Мембранные пузырьки величиной до 2 мкм Участвуют в формировании пищеварительных вакуолей, разрушении крупных молекул клетки

Слайд 18

Центральная вакуоль

Покрыта тонопластом – мембраной Заполнена клеточным соком Формируется при участии ЭПС Нуклеиновых кислот нет

Слайд 20

Выделительная вакуоль простейших

  • Слайд 21

    Митохондрии

    Двумембранные органеллы продолговатой формы. Являются энергетическими станциями клеток. Содержат ДНК и РНК.

    Слайд 22

    Пластиды

    По окраске и выполняемой функции выделяют три основных типа пластид: лейкопласты, хромопласты, хлоропласты. Содержат ДНК и РНК.

    Слайд 23

    Клетки прокариот и эукариот(домашнее задание)

    Слайд 24

    Информационные источники

    Википедия - ru.wikipedia.org lt.pandapedia.com/wiki/Centrosoma e-lib.gasu.ru/eposobia/bondarenko/R_1_2.html shkola.lv/index.php?mode=lsntheme&themeid=104

    Посмотреть все слайды

    Конспект

    Урок

    (Слайд 1)

    Цель урока

    Оборудование:

    Организационный момент.

    Ход урока:

    План урока: (Слайд 2)

    Немембранные органоиды

    Мембранные органоиды

    Клетки прокариот и эукариот

    Изучение нового материала:

    Называют постоянные компоненты клетки, выполняющие в ней конкретные функции и обеспечивающие осуществление процессов и свойств, необходимых для поддержания ее жизнедеятельности.

    Классификация органоидов (Слайд 4) –

    Немембранные органоиды

    РИБОСОМЫ (Слайд 5).

    Рибосома (Слайд 6). трансляцией полирибосомой (Слайд 7)

    Состоит из двух центриолей, каждая представляет собой полый цилиндр, образованный девятью триплетами микротрубочек.

    МИКРОТРУБОЧКИ (Слайд 9)

    МИКРОФИЛАМЕНТЫ (Слайд 10).

    Мембранные органоиды

    Одномембранные органоиды

    ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ (ЭПС ) (Слайд 13)

    гранулярному (или шероховатому ) (Нажать кнопкой мышки) гладкому (или агранулярному ) ЭПР (Нажать кнопкой мышки

    (Слайд 14) – нажать кнопку мыши.

    (Слайд 15). Слайд 16 ).

    цис везикулы транс

    ЛИЗОСОМЫ (Слайд 17)

    , нейтрофилах .

    (аутофагия ). - автолиз .

    ВАКУОЛИ

    центральную вакуоль (Слайд 18) ,

    Содержимое вакуолей - клеточный сок. запасными веществами клетки.

    (отходы).

    ,

    .

    Функции центральной вакуоли:

    Двумембранные органоиды

    МИТОХОНДРИИ (Слайд 20)

    кристы (нажать кнопку мыши) матриксом (нажать кнопку мыши).

    ПЛАСТИДЫ.

    пластидом :

    Лейкопласты

    Хромопласты

    Хлоропласты

    Клетки прокариот и эукариот

    Информационные источники:

    Гигани О.Б. Общая биология.9-11: Таблицы:схемы/О.Б.гигани. – М.: Гуманитар.изд.центр ВЛАДОС, 2007.

    Кольман Я., Рем К.-Г. Наглядная биохимия: Пер. с нем. - М.: Мир, 2000. http://yanko.lib.ru/books/biolog/nagl_biochem/04.htm

    Википедия - ru.wikipedia.org

    www.college.ru/.../paragraph4/theory.html

    Органоид

    Строение

    Функции

    Наличие нуклеиновых кислот

    Немембранные органоиды

    Рибосомы

    Участие в синтезе белка

    Клеточный центр (центросома)

    Состоит из двух центриолей, каждая представляет собой полый цилиндр, образованный девятью триплетами микротрубочек.

    Микротрубочки

    Полые цилиндрические структуры

    Образуют цитоскелет клетки, веретено деления, центриоли, жгутики и реснички

    Микрофиламенты

    Сократимые элементы цитоскелета, образованы нитями актина и других сократительных белков

    Хромосомы

    Носители генетической информации

    Одномембранные органоиды

    Плазмолемма (цитолемма)

    Эндоплазматическая сеть

    Гладкая (агранулярная) ЭПС

    Шероховатая (гранулярная) ЭПС

    Комплекс Гольджи (пластинчатый комплекс)

    диктиосома –

    Лизосомы

    литические (расщепляющее) ферменты

    Внутриклеточное пищеварение

    Двумембранные органоиды

    Митохондрии

    Синтез АТФ

    Пластиды

    Протопластиды

    Хлоропласты

    Хромопласты

    Лейкопласты

    Не имеют окраски

    Сравнительная характеристика прокариотических и эукариотических клеток

    Урок

    «Органоиды клетки. Особенности клеток прокариот и эукариот»

    (Слайд 1)

    Цель урока : знакомство с особенностями строениями и функционирования постоянных компонентов клеток (органоидов); сравнение особенностей клеток прокариот и эукариот

    Оборудование: мультимедийные презентации «Органоиды клетки», «Клетки прокариот и эукариот», рабочая тетрадь по биологии (11 класс), с.61-64, раздаточный материал

    Организационный момент.

    Ход урока:

    План урока: (Слайд 2)

    Немембранные органоиды

    Мембранные органоиды

    Клетки прокариот и эукариот

    Изучение нового материала:

    Органоидами (органеллами) (Слайд 3) называют постоянные компоненты клетки, выполняющие в ней конкретные функции и обеспечивающие осуществление процессов и свойств, необходимых для поддержания ее жизнедеятельности.

    Органоиды могут иметь как мембранное, так и немембранное строение.

    Классификация органоидов (Слайд 4) – Работа по заполнению схемы классификации: вспоминают материал, изученный в 9 классе (желательна запись в тетрадь).

    ЗАДАНИЕ (распечатки на каждой парте): Используя объяснения учителя и материалы учебника, заполнить таблицу:

    Немембранные органоиды

    РИБОСОМЫ (Слайд 5).

    Рибосома - важнейший органоид живой клетки сферической или слегка овальной формы, диаметром 100-200 ангстрем, состоящий из большой и малой субъединиц (Слайд 6). Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК, или мРНК. Этот процесс называется трансляцией . В эукариотических клетках рибосомы располагаются на мембранах эндоплазматического ретикулума, хотя могут быть локализованы и в неприкрепленной форме в цитоплазме. Нередко с одной молекулой мРНК ассоциировано несколько рибосом, такая структура называется полирибосомой (Слайд 7) . Синтез рибосом у эукариот происходит в специальной внутриядерной структуре - ядрышке.

    Рибосомы эукариот включают четыре молекулы рРНК

    Рибосомы впервые были описаны как уплотненные частицы, или гранулы, клеточным биологом румынского происхождения Джорджем Паладе в середине 1950-х годов. Термин "рибосома" был предложен Ричардом Робертсом в 1958 вместо "рибонуклеобелковая частица микросомальной фракции".

    КЛЕТОЧНЫЙ ЦЕНТР (ЦЕНТРОСОМА) (Слайд 8).

    Состоит из двух центриолей, каждая представляет собой полый цилиндр, образованный девятью триплетами микротрубочек.

    Центриоли представляют собой цилиндрические белковые структуры, расположенные вблизи ядра клеток животных (у растений центриолей нет). Центриоль представляет собой цилиндр, боковая поверхность которого образована девятью наборами микротрубочек. Количество микротрубочек в наборе может колебаться для разных организмов от 1 до 3.

    Вокруг центриолей находится так называемый центр организации цитоскелета, район в котором группируются минус концы микротрубочек клетки.

    Перед делением клетка содержит две центриоли, расположенные под прямым углом друг к другу. В ходе митоза они расходятся к разным концам клетки, формируя полюса веретена деления. После цитокинеза каждая дочерняя клетка получает по одной центриоли, которая удваивается к следующему делению. Удвоение центриолей происходит не делением, а путем синтеза новой структуры, перпендикулярной существующей.

    МИКРОТРУБОЧКИ (Слайд 9)

    Это белковые внутриклеточные структуры, входящие в состав цитоскелета.

    Микротрубочки представляют собой цилиндры диаметром 25 нм с полостью внутри. Их длина может быть от нескольких микрометров до, вероятно, нескольких миллиметров в аксонах нервных клеток. Микротрубочки полярны: на одном конце происходит самосборка микротрубочки, на другом - разборка. В клетках микротрубочки играют роль структурных компонентов и участвуют во многих клеточных процессах, включая митоз, цитокинез и везикулярный транспорт.

    Динамическая нестабильность микротрубочек играет важную физиологическую роль. Например, при делении клетки микротрубочки растут очень быстро и способствуют правильной ориентации хромосом и образованию митотического веретена.

    Микротрубочки в клетке используются в качестве "рельсов" для транспортировки частиц. По их поверхности могут перемещаться мембранные пузырьки и митохондрии. Транспортировку по микротрубочкам осуществляют белки, называемые моторными.

    МИКРОФИЛАМЕНТЫ (Слайд 10).

    Сократимые элементы цитоскелета, образованы нитями актина и других сократительных белков. Участвуют в формировании цитоскелета клетки, амебоидном движении и др. Нуклеиновых кислот нет

    ХРОМОСОМЫ (Слайд 11) – учащиеся отвечают на поставленный вопрос, вспоминая материал предыдущего урока, а затем на слайде открывается ответ.

    Органоиды ядра эукариот, каждая хромосома образована одной молекулой ДНК и молекулами белков. Состоит из двух нитей – хроматид, соединенных центромерой. Являются носителями генетической информации.

    Мембранные органоиды

    Одномембранные органоиды

    ПЛАЗМОЛЕММА (Слайд 12) - учащиеся отвечают на поставленный вопрос, вспоминая материал предыдущего урока, а затем на слайде открывается ответ.

    Это жидкостно-мозаическую модель, где липидные слои мембраны пронизаны белковыми молекулами. Она обеспечивает разграничительную функцию по отношению к внешней для клетки среде и выполняет транспортную функцию. Нуклеиновых кислот нет.

    ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ (ЭПС ) (Слайд 13)

    В эукариотической клетке существует система переходящих друг в друга мембранных отсеков (трубок и цистерн), которая называется эндоплазматическим ретикулумом (или эндоплазматическая сеть, ЭПР или ЭПС). Ту часть ЭПР, к мембранам которого прикреплены рибосомы, относят к гранулярному (или шероховатому ) (Нажать кнопкой мышки) эндоплазматическому ретикулуму, на его мембранах происходит синтез белков. Те компартменты, на стенках которых нет рибосом, относят к гладкому (или агранулярному ) ЭПР (Нажать кнопкой мышки ), принимающему участие в синтезе липидов. Внутренние пространства гладкого и гранулярного ЭПР не изолированы, а переходят друг в друга и сообщаются с просветом ядерной оболочки. Нуклеиновых кисло нет.

    Это мембранная структура эукариотической клетки, в основном предназначенная для выведения веществ, синтезированных в эндоплазматическом ретикулуме (Слайд 15). Комплекс Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1898 году (Слайд 16 ).

    В цистернах Аппарата Гольджи созревают некоторые белки, синтезированные на мембранах гранулярного ЭПР и предназначенные для секреции или образования лизосом. Аппарат Гольджи асимметричен - цистерны располагающиеся ближе к ядру клетки (цис -Гольджи) содержат наименее зрелые белки, к этим цистернам непрерывно присоединяются мембранные пузырьки - везикулы , отпочковывающиеся от эндоплазматического ретикулума. По-видимому, при помощи таких же пузырьков происходит дальнейшее перемещение созревающих белков от одной цистерны к другой. В конце концов от противоположного конца органеллы (транс -Гольджи) отпочковываются пузырьки, содержащие полностью зрелые белки.

    ЛИЗОСОМЫ (Слайд 17)

    Это мембранные пузырьки величиной до 2 мкм. Внутри лизосом содержатся гидролитические ферменты, способные переваривать белки, липиды, углеводы, нуклеиновые кислоты. Лизосомы образуются из пузырьков, отделяющихся от комплекса Гольджи, причем предварительно на шероховатом эн до плазматическом ретикулуме синтезируются гидролитические ферменты.

    Сливаясь с эндоцитозными пузырьками, лизосомы образуют пищеварительную вакуоль (вторичная лизосома) , где происходит расщепление органических веществ до составляющих их мономеров. Последние через мембрану пищеварительной вакуоли поступают в цитоплазму клетки. Именно так происходит, например, обезвреживание бактерий в клетках крови - нейтрофилах .

    Вторичные лизосомы, в которых закончился процесс переваривания, практически не содержат ферментов. В них находятся лишь непереваренные остатки.

    Лизосомы участвуют также в разрушении материалов клетки, например запасных питательных веществ, а также макромолекул и целых органелл, утративших функциональную активность (аутофагия ). При патологических изменениях в клетке или ее старении мембраны лизосом могут разрушаться: ферменты выходят в цитоплазму, и осуществляется самопереваривание клетки - автолиз . Иногда с помощью лизосом уничтожаются целые комплексы клеток и органы. Например, когда головастик превращается в лягушку, лизосомы, находящиеся в клетках хвоста, переваривают его: хвост исчезает, а образовавшиеся во время этого процесса вещества всасываются и используются другими клетками тела.

    ВАКУОЛИ

    Это крупные мембранные пузырьки или полости в цитоплазме, заполненные клеточным соком. Вакуоли образуются в клетках растений и грибов из пузыревидных расширений эндоплазматического ретикулума или из пузырьков комплекса Гольджи. В меристематических клетках растений вначале возникает много мелких вакуолей. Увеличиваясь, они сливаются в центральную вакуоль (Слайд 18) , которая занимает до 70-90% объема клетки и может быть пронизана тяжами цитоплазмы.

    Содержимое вакуолей - клеточный сок. Он представляет собой водный раствор различных неорганических и органических веществ. Химический состав и концентрация клеточного сока очень изменчивы и зависят от вида растений, органа, ткани и состояния клетки. В клеточном соке содержатся соли, сахара (прежде всего сахароза, глюкоза, фруктоза), органические кислоты (яблочная, лимонная, щавелевая, уксусная и др.), аминокислоты, белки. Эти вещества являются промежуточными продуктами метаболизма, временно выведенными из обмена веществ клетки в вакуоль. Они являются запасными веществами клетки.

    Помимо запасных веществ, которые могут вторично использоваться в метаболизме, клеточный сок содержит фенолы, танины (дубильные вещества), алкалоиды, антоцианы, которые выводятся из обмена в вакуоль и таким путем изолируются от цитоплазмы.

    Танины особенно часто встречаются в клеточном соке (а также в цитоплазме и оболочках) клеток листьев, коры, древесины, незрелых плодов и семенных оболочек. Алкалоиды присутствуют, например, в семенах кофе (кофеин), плодах мака (морфин) и белены (атропин), стеблях и листьях люпина (люпинин) и др. Считается, что танины с их вяжущим вкусом, алкалоиды и токсичные полифенолы выполняют защитную функцию: их ядовитый (чаще горький) вкус и неприятный запах отталкивают растительноядных животных, что предотвращает поедание этих растений.

    В вакуолях также часто накапливаются конечные продукты жизнедеятельности клеток (отходы). Таким веществом для клеток растений является щавелевокислый кальций, который откладывается в вакуолях в виде кристаллов различной формы.

    В клеточном соке многих растений содержатся пигменты, придающие клеточному соку разнообразную окраску. Пигменты и определяют окраску венчиков цветков, плодов, почек и листьев, а также корнеплодов некоторых растений (например, свеклы).

    Клеточный сок некоторых растений содержит физиологически активные вещества - фитогормоны (регуляторы роста), фитонциды, ферменты . В последнем случае вакуоли действуют как лизосомы. После гибели клетки мембрана вакуоли теряет избирательную проницаемость, и ферменты, высвобождаясь из нее, вызывают автолиз клетки.

    Функции центральной вакуоли:

    Накопление питательных веществ, метаболитов и пигментов;

    Удаление из цитоплазмы продуктов метаболизма;

    Регуляция водно-солевого обмена;

    Поддержание тургорного давления;

    Участие в разрушении макромолекул и клеточных структур.

    Пищеварительные вакуоли (Слайд 19) животных клеток содержат литические (расщепляющие) ферменты и пищевые частицы. Здесь идет внутриклеточное пищеварение.

    Выделительные вакуоли простейших содержат воду и растворенные в ней продукты метаболизма. Функция – осморегуляция, удаление жидких продуктов метаболизма.

    Двумембранные органоиды

    МИТОХОНДРИИ (Слайд 20)

    Двумембранные органеллы продолговатой формы. Они являются энергетическими станциями клеток. Митохондрии - особые органеллы клетки, основной функцией которых является синтез АТФ - универсального носителя энергии. Дыхание (поглощение кислорода и выделение углекислого газа) происходит также за счет энзиматических систем митохондрий.

    Митохондрии имеют наружную мембрану состоящую из двух слоёв, разделённых пространством в 60-80 ангстрем. От внутреннего слоя в полость митохондрии выступают выпячивания - кристы (нажать кнопку мыши) . Пространство между кристами заполнено веществом, называемым матриксом (нажать кнопку мыши).

    В матриксе содержатся различные ферменты, принимающие участие в дыхании и синтезе АТФ. Центральное значение для синтеза АТФ имеет водородный потенциал внутренней мембраны митохондрии. Содержат ДНК и РНК.

    ПЛАСТИДЫ.

    Пластиды - органоиды эукариотических растений и некоторых фотосинтезирующих простейших. Покрыты двойной мембраной. Содержат ДНК и РНК. Совокупность пластид клетки образует пластидом . По окраске и выполняемой функции выделяют три основных типа пластид (Слайд 21) :

    Лейкопласты - неокрашенные пластиды, как правило, выполняют запасающую функцию. В лейкопластах клубней картофеля накапливается крахмал. Лейкопласты высших растений могут превращаться в хлоропласты или хромопласты.

    Хромопласты - пластиды, окрашенные в жёлтый, красный или оранжевый цвет. Окраска хромопластов связана с накоплением в них каротиноидов. Хромопласты определяют окраску осенних листьев, лепестков цветов, корнеплодов, созревших плодов.

    Хлоропласты - пластиды, несущие фотосинтезирующие пигменты - хлорофиллы. Имеют зелёную окраску у высших растений, харовых и зелёных водорослей. Набор пигментов, участвующих в фотосинтезе (и, соответственно, определяющих окраску хлоропласта) различен у представителей разных таксономических отделов. Хлоропласты имеют сложную внутреннюю структуру

    Клетки прокариот и эукариот

    (в качестве домашнего задания с объяснением задания в классе)

    Рассмотреть таблицу 2 на с.118

    Заполнить рабочую тетрадь на с.63-64

    Заполнить таблицу, расставив знаки «+» и «-»

    Сравнительная характеристика прокариотических и эукариотических клеток

    Информационные источники:

    Гигани О.Б. Общая биология.9-11: Таблицы:схемы/О.Б.гигани. – М.: Гуманитар.изд.центр ВЛАДОС, 2007.

    Кольман Я., Рем К.-Г. Наглядная биохимия: Пер. с нем. - М.: Мир, 2000. http://yanko.lib.ru/books/biolog/nagl_biochem/04.htm

    Википедия - ru.wikipedia.org

    priroda.clow.ru/text/1190.htm – Энциклопедия «Растения и животные»

    biology.asvu.ru/page.php?id=17 –

    www.college.ru/.../paragraph4/theory.html

    shkola.lv/index.php?mode=lsntheme&themeid=104

    Дополнительный материал для учителя (Гигани О.Б, 2007)

    Органоид

    Строение

    Функции

    Наличие нуклеиновых кислот

    Немембранные органоиды

    Рибосомы

    Образованы двумя субъединицами (большой и малой), сформированными молекулами рРНК и белков

    Участие в синтезе белка

    Клеточный центр (центросома)

    Состоит из двух центриолей, каждая представляет собой полый цилиндр, образованный девятью триплетами микротрубочек.

    Входят в состав митотического аппарата клетки, участвуют в делении клетки

    Микротрубочки

    Полые цилиндрические структуры

    Образуют цитоскелет клетки, веретено деления, центриоли, жгутики и реснички

    Микрофиламенты

    Сократимые элементы цитоскелета, образованы нитями актина и других сократительных белков

    Участие в формировании цитоскелета клетки, амебоидном движении, эндоцитозе, циклозе

    Хромосомы

    Органоиды ядра эукариотических клеток, каждая хромосома образована одной молекулой ДНК и молекулами белков

    Носители генетической информации

    Одномембранные органоиды

    Плазмолемма (цитолемма)

    Эндоплазматическая сеть

    Гладкая (агранулярная) ЭПС

    Шероховатая (гранулярная) ЭПС

    Элементарная мембрана, покрывающая клетку снаружи

    Система мембран, образующих канальца, пузырьки, цистерны, трубочки. Соединена с плазмолеммой и ядерной мембраной.

    На поверхности мембран располагаются ферменты, катализирующие синтез липидов и углеводов.

    На поверхности мембран располагаются рибосомы.

    Поддержание формы клетки, защита от неблагоприятных внешних воздействий, транспорт веществ в клетку и из нее, рецепторная (благодаря различным молекулам, встроенным в мембрану, воспринимает сигналы окружающей среды)

    Транспорт веществ в клетке, разделение клетки на отсеки, посттрансляционная модификация белков.

    Синтез липидов и углеводов, накопление и удаление ядовитых веществ

    Синтез белков на прикрепленных к мембране рибосомах, объединенных в комплексы - полисомы

    Комплекс Гольджи (пластинчатый комплекс)

    Строение в клетках разных организмов сильно различается. Структурно-функциональная единица комплекса Гольджи – диктиосома – стопка из 5-20 плоских цистерн, переходящих в сеть трубочек и пузырьков

    Модификация веществ; упаковка их в мембранные пузырьки, которые затем используются клеткой или удаляются из нее; синтез некоторых веществ; формирование клеточных мембран; формирование лизосом

    Лизосомы

    Мембранные пузырьки округлой формы, содержат литические (расщепляющее) ферменты

    Участие в формировании пищеварительных вакуолей (внутриклеточное пищеварение); разрушение крупных молекул клетки; лизис (разрушение) отдельных клеточных структур (автолиз) и всей клетки; устранение провизорных органов

    Центральная вакуоль растительной клетки

    Пищеварительные вакуоли животных клеток

    Выделительные вакуоли простейших

    Полости, окруженные мембраной и содержащие водянистую жидкость с различными растворенными веществами.

    Ограничена тонопластом – мембраной. Заполнена клеточным соком (растворенными органическими и неорганическими веществами, пигментами, метаболитами). Формируется при участии ЭПС.

    Накопление питательных веществ, метаболитов и пигментов; удаление из цитоплазмы продуктов метаболизма; регуляция водно-солевого обмена; поддержание тургорного давления; участие в разрушении макромолекул и клеточных структур.

    Внутриклеточное пищеварение

    Осморегуляция, удаление жидких продуктов метаболизм

    Двумембранные органоиды

    Митохондрии

    Наружная мембрана гладкая, внутренняя – образует выросты – кристы. Внутри находится матрикс – полужидкое вещество, содержащее ферменты, кольцевые молекулы ДНК, молекулы РНК, рибосомы

    Синтез АТФ

    Пластиды

    Протопластиды

    Хлоропласты

    Хромопласты

    Лейкопласты

    Наружная мембрана гладкая, внутренняя мембрана погружена в строму – полужидкое вещество. Содержат кольцевые молекулы ДНК, молекулы РНК и рибосомы

    Не имеют окраски

    Внутренняя мембрана образует уплощенные мешочки – тилакоиды, в которых располагаются молекулы пигментов (хлорофилла, каротиноидов), группа тилакоидов образует граны

    Внутренняя мембрана образует немногочисленные тилакоиды

    Пластиды, из которых формируются все виды пластид (хлоропласты, лейкопласты, хромопласты)

    Фотосинтез, могут превращаться в хромопласты

    Окраска лепестков цветков, плодов, листьев, иногда корней

    Синтез и накопление крахмала, масло, белков, могут превращаться в хлоропласты и хромопласты

    Сравнительная характеристика прокариотических и эукариотических клеток

    Скачать конспект

    «Машиностроительный комплекс» - Продукция автомобилестроения - различные легковые и грузовые автомобили. Что такое машиностроительный комплекс? Машиностроительный комплекс. Факторы размещения. Выводы. Докажите устно, что предприятия МСК связаны с другими межотраслевыми комплексами. Роль и значение машиностроения. Факторы размещения отраслей машиностроительного комплекса.

    «Агропромышленный комплекс 9 класс» - (Апк). Пищевая промышленность. Что такое АПК? Агропромышленный комплекс. Лёгкая промышленность осуществляет как первичную обработку сырья, так и выпуск готовой продукции. Состав АПК. Легкая промышленность. Выполнила ученица 9 М класса Груздова Екатерина. Изучить особенности агропромышленного комплекса.

    «Лесной комплекс» - Целлюлозно-бумажная отрасль. Зачем нужна древесина? Отрасли лесной промышленности. Страны богатые лесными ресурсами*. Продукция лесной и деревообрабатывающей промышленности. Леса уходят. План характеристики лесной базы. Лесная промышленность (Химико-лесной комплекс). Северо-Европейская Центральная Урало-Поволжская Сибирская.

    «Природные комплексы» - На каком материке самые разнообраз- ные ПК и почему? Природный комплекс. «Компонент»-в переводе с латинского означает «составная часть целого». Природные зоны. Географическая оболочка. «Комплекс»-в переводе с латинского означает «сочетание». Природные комплексы. Участок леса. Верхняя часть литосферы.

    «Природные комплексы России» - Таежными лесами, а на севере. Цели урока: Рассмотреть факторы формирования ландшафтов; Познакомиться с природным районированием России. Изумительной красоты озера. Назовите крупные районы России, которые соответствуют основным тектоническим структурам. Таким образом, среди природных комплексов в России выделяют зональные – географические пояса и природные зоны, и азональные – природные районы.

    «Научный комплекс» - 1 Найдите на карте основные Технополисы нашей страны. 2 Запишите в тетрадь понятие «Технополис». Персонал. Понятие. Межотраслевые комплексы. Крупнейшие центры науки. Состав научного комплекса. Академический сектор Сектор вузовского образования Предпринимательский сектор Отраслевой сектор Заводской сектор.

    История открытия аппарата Гольджи - мембранной структуры эукариотической клетки, органеллы, в основном предназначенной для выведения веществ, синтезированных в эндоплазматическом ретикулуме. Транспорт белков и веществ из эндоплазматической сети.

    Подобные документы

      Описание аппарата Гольджи: структура и функции. Анализ деятельности аппарата Гольджи в клетке. Сущность и особенности фибриллярных структур. Сортировка белков и передача сигнала. Общая характеристика молекулярного механизма функционирования аппарата.

      реферат, добавлен 13.12.2008

      Классификация органелл клетки общего и специального значения. Основные задачи и функции плазмалеммы. Эндоплазматическая сеть, ее строение и структура. Цитоплазматический матрикс, структура микрофиламентов и микротрубочек. Пластинчатый комплекс Гольджи.

      презентация, добавлен 16.02.2014

      Цитоплазма как внутренняя среда клетки. Характеристика составляющих цитоплазмы: гиалоплазма (цитозоль), органеллы, включения. Схема строения аппарата Гольджи. Лизосомы, пероксисомы и авторадиография в клетках. Фракционирование и авторадиография клеток.

      презентация, добавлен 19.01.2015

      Виды и формы клеток. Структурные компоненты клетки. Особенности биологической мембраны. Характеристика цитоплазмы и ее основных органоидов. Функции митохондрий, эндоплазматической сети и аппарата Гольджи. Роль лизосом, центриолей и микротрубочек.

      презентация, добавлен 06.06.2012

      Элементы строения клетки и их характеристика. Функции мембраны, ядра, цитоплазмы, клеточного центра, рибосомы, эндоплазматической сети, комплекса Гольджи, лизосом, митохондрий и пластид. Отличия в строении клетки представителей разных царств организмов.

      презентация, добавлен 26.11.2013

      Изучение физико-химических свойств цитоплазмы и ее составных частей: органоидов клетки (ядро, пластиды, митохондрии, рыбосомы), аппарата Гольджи, эндоплазматической сети. Ознакомление с видами электронных микроскопов и основными принципами их работы.

      курсовая работа, добавлен 14.07.2010

      История развития клеточной теории, ее эволюция. Строение и функции оболочки клетки, характеристика оболочки, цитоплазмы, ядра. Роль плазматической мембраны и аппарата Гольджи в жизнедеятельности клеток. Рибосомы и митохондрии, их функции и состав.

      реферат, добавлен 16.08.2009

      Авторы создания клеточной теории. Особенности архей и цианобактерий. Филогения живых организмов. Строение эукариотической клетки. Подвижность и текучесть мембран. Функции аппарата Гольджи. Симбиотическая теория происхождения полуавтономных органелл.

      презентация, добавлен 14.04.2014

      История исследований клетки, самые известные работы всех времен, написанные по данной теме и современные знания. Элементарное строение клетки, ее основные составные части и их функции. Цитоплазма и ее органоиды, назначение комплекса Гольджи и включений.

      реферат, добавлен 07.10.2009

      Сущность и функции везикулярного транспорта. Процессы эндоцитоза и экзоцитоза. Образование отщепляющейся вакуоли, ее внутриклеточное перемещение. Транспорт белков через аппарат Гольджи. Механизм биосинтеза и секреции белковых и полипептидных гормонов.

    Комплекс ГольджиРаботу выполнила: ученица 10
    класс «Б», Литвинова Валерия
    Работу проверили: учитель
    биологии, Косенкова А.В

    Аппара́т (ко́мплекс) Го́льджи - мембранная структура эукариотической клетки, органелла, в основном предназначенная для

    выведения
    веществ, синтезированных в эндоплазматическом
    ретикулуме.
    Камилло Гольджи – в 1898году
    обнаружил в нервных клетках
    вокруг ядра сетчатые структуры.
    Затем назвал - сетчатый аппарат.

    Схема строения

    Комплекс Гольджи. Строение

    . Структура
    представлена стопкой уплощенных
    мешочков мембран. Они называются цистерны. Эта
    стопка мешочков связана с системой пузырьков
    (пузырьками Гольджи). С одного конца стопок
    мешочков постоянно происходит формирование новых
    цистерн слиянием пузырьков, которые
    отпочковываются от эндоплазматического ретикулума
    (сети полостей). С другого же конца стопки с
    внутренней стороны цистерны завершают созревание и
    распадаются вновь на пузырьки. Так происходит
    постепенное перемещение цистерн в сопке к
    внутренней стороне от стороны наружной.

    Электронная фотография

    Функции комплекса Гольджи достаточно разнообразны

    . Среди них следует выделить:
    1)Сортировку, выведение, накопление секреторных продуктов.
    2)Накопление липидных молекул и формирование липопротеидов.
    3)Завершение модификации белков (посттрансляционной), а именно
    гликозирования, сульфатирования и прочего.
    4)Формирование лизосом.
    5)Участие в образовании акросомы.
    6)Полисахаридный синтез для формирования восков, гликопротеидов,
    слизей, камеди, веществ матрикса в клеточных стенках растений
    (пектинов, гемицеллюлозы и прочих).
    7)Образование сократимых вакуолей у простейших.
    8)Образование клеточной пластинки в растительных клетках после
    деления ядра.

    а А Магомедова Саният


    Аппарат Гольджи (комплекс Гольджи) - мембранная структура эукариотической клетки, органелла, в основном предназначенная для выведения веществ, синтезированных в эндоплазматическом ретикулуме. Аппарат Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1897 году Аппарат Гольджи


    Комплекс Гольджи представляет собой стопку дискообразных мембранных мешочков (цистерн), несколько расширенных ближе к краям и связанную с ними систему пузырьков Гольджи. В растительных клетках обнаруживается ряд отдельных стопок (диктиосомы), в животных клетках часто содержится одна большая или несколько соединенных трубками стопок. В цистернах Аппарата Гольджи созревают белки предназначенные для секреции, трансмембранные белки плазматической мембраны, белки лизосом и т.д. Созревающие белки последовательно перемещаются по цистернам органеллы, в которых происходит их окончательное сворачивание, а также модификации - гликозилирование и фосфорилирование строение 1- цистерны2 - пузырьки

    Эндоплазматическая сеть (биол.), внутриклето чный органоид, представленный системой плоских цистерн, канальцев и пузырьков, ограниченных мембранами; обеспечивает главным образом передвижение веществ из окружающей среды в цитоплазму и между внутриклето чными структурами. Впервые Э. с. была выявлена в 1945 американским ученым К. Портером и другим методом электронной микроскопии. Эндоплазматическая сеть


    Рис. 13. Схема строения эндоплазматической сети. 1 - свободные рибосомы; 2 - полости; 3 - рибосомы, прикрепленные к мембранам; 4 - ядерная оболочка. строение


    функции 1) транспорт веществ из одной части клетки в другую 2) разделение цитоплазмы клетки на компартменты («отсеки») 3) синтез углеводов и липидов (гладкая ЭПС) 4) синтез белка (шероховатая ЭПС) 5) место образования аппарата Гольджи


    Лизосомы были впервые описаны в 1955 году Кристианом де Дювом в животной клетке, а позже были обнаружены и в растительной. У растений к лизосомам по способу образования, а отчасти и по функциям близки вакуоли. Лизосомы есть также у большинства протистов (как с фаготрофным, так и с осмотрофным типом питания) и у грибов. Таким образом, наличие лизосом характерно для клето к всех эукариот. У прокариот лизосомы отсутствуют, так как у них отсутствует фагоцитоз и нет внутриклето чного пищеварения. лизосомы


    А - схема участия структур клетки в образовании лизосом и во внутриклето чном пищеварении: 1 - образование из гранулярной эндоплазматической сети мелких пузырьков, содержащих гидролитические ферменты; 2- перенос ферментов в комплекс Гольджи; 3 - образование первичных лизосом; 4 - выделение и использование (5) гидролаз при внеклето чном расщеплении; 6 - эндоцитозные пузырьки; 7 - слияние первичных лизосом и эндоцитозных пузырьков; 8 - образование вторичных лизосом (фаголизосом); 9 - телолизосомы; 10 - экскреция остаточных телец; 11 - слияние первичных лизосом с разрушающимися структурами клетки; 12 - аутофагосома.Б - электронная микрофотография среза вторичных лизосом (обозначены стрелками). строение


    Функциями лизосом являются: переваривание захваченных клеткой при эндоцитозе веществ или частиц (бактерий, других клето к) аутофагия - уничтожение ненужных клетке структур, например, во время замены старых органоидов новыми, или переваривание белков и других веществ, произведенных внутри самой клетки автолиз - самопереваривание клетки, приводящее к ее гибели (иногда этот процесс не является патологическим, а сопровождает развитие организма или дифференцировку некоторых специализированных клето к). Пример: При превращении головастика в лягушку, лизосомы, находящиеся в клетках хвоста, переваривают его: хвост исчезает, а образовавшиеся во время этого процесса вещества всасываются и используются другими клетками тела. функции