Клетки крови: общие сведения. Клетки крови человека — функции, где образуются и разрушаются Как называются белые кровяные клетки


Кровь человека – это жидкая субстанция, состоящая из плазмы и находящихся в ней во взвешенном состоянии форменных элементов, или клеток крови, которые составляют примерно 40-45 % от общего объема. Они имеют малые размеры, и рассмотреть их можно только под микроскопом.

Существует несколько видов кровяных клеток, выполняющих определенные функции. Одни из них функционируют только внутри кровеносной системы, другие выходят за ее пределы. Общим для них является то, что все они образуются в костном мозге из стволовых клеток, процесс их образования непрерывен, а срок жизни ограничен.

Все клетки крови делятся на красные и белые. Первые – это эритроциты, составляющие большую часть всех клеток, вторые – лейкоциты.

К клеткам крови принято причислять и тромбоциты. Эти небольшие кровяные пластинки на самом деле не являются полноценными клетками. Они представляют собой мелкие фрагменты, отделившиеся от крупных клеток – мегакариоцитов.

Эритроциты называются красными кровяными тельцами. Это самая многочисленная группа клеток. Они переносят кислород от органов дыхания к тканям и принимают участие в транспортировке углекислого газа от тканей к легким.

Место образование эритроцитов – красный костный мозг. Живут они 120 дней и разрушаются в селезенке и печени.

Образуются из клеток-предшественниц – эритробластов, которые перед превращением в эритроцит проходят разные стадии развития и несколько раз делятся. Таким образом, из эритробласта образуется до 64 красных кровяных клеток.

Эритроциты лишены ядра и по форме напоминают вогнутый с двух сторон диск, диаметр которого в среднем составляет около 7-7,5 мкм, а толщина по краям – 2,5 мкм. Такая форма способствует увеличению пластичности, необходимой для прохождения по мелким сосудам, и площади поверхности для диффузии газов. Старые эритроциты утрачивают пластичность, из-за чего задерживаются в мелких сосудах селезенки и там же разрушаются.

Большая часть эритроцитов (до 80 %) имеет двояковогнутую сферическую форму. Остальные 20 % могут иметь другую: овальную, чашеобразную, сферическую простую, серповидную и пр. Нарушение формы связано с различными заболеваниями (анемией, дефицитом витамина B 12 , фолиевой кислоты, железа и др.).

Большую часть цитоплазмы эритроцита занимает гемоглобин, состоящий из белка и гемового железа, которое придает крови красный цвет. Небелковая часть представляет собой четыре молекулы гема с атомом Fe в каждой. Именно благодаря гемоглобину эритроцит способен переносить кислород и выводить углекислый газ. В легких атом железа связывается с молекулой кислорода, гемоглобин превращается в оксигемоглобин, придающий крови алый цвет. В тканях гемоглобин отдает кислород и присоединяет углекислый газ, превращаясь в карбогемоглобин, в результате кровь становится темной. В легких углекислый газ отделяется от гемоглобина и выводится легкими наружу, а поступивший кислород вновь связывается с железом.

Кроме гемоглобина, в цитоплазме эритроцита содержатся различные ферменты (фосфатаза, холинэстеразы, карбоангидраза и др.).

Оболочка эритроцита имеет достаточно простое строение, по сравнению с оболочками других клеток. Она представляет собой эластичную тонкую сетку, что обеспечивает быстрый газообмен.

На поверхности красных кровяных клеток находятся антигены разных видов, которые определяют резус-фактор и группу крови. Резус-фактор может быть положительным или отрицательным в зависимости от присутствия или отсутствия антигена Rh. Группа крови зависит от того, какие антигены находятся на мембране: 0, A, B (первая группа – 00, вторая – 0A, третья – 0B, четвертая – AB).

В крови здорового человека в небольших количествах могут быть недозрелые эритроциты, которые называются ретикулоцитами. Их количество увеличивается при значительной кровопотере, когда требуется возмещение красных клеток и костный мозг не успевает их производить, поэтому выпускает недозрелые, которые тем не менее способны выполнять функции эритроцитов по транспортировке кислорода.

Лейкоциты – это белые клетки крови, основная задача которых – защищать организм от внутренних и внешних врагов.

Их принято делить на гранулоциты и агранулоциты. Первая группа – это зернистые клетки: нейтрофилы, базофилы, эозинофилы. Вторая группа не имеет гранул в цитоплазме, к ней относятся лимфоциты и моноциты.

Это самая многочисленная группа лейкоцитов – до 70 % от общего числа белых клеток. Свое название нейтрофилы получили в связи с тем, что их гранулы окрашиваются красителями с нейтральной реакцией. Зернистость у него мелкая, гранулы имеют фиолетово-коричневатый оттенок.

Основная задача нейтрофилов – это фагоцитоз, который заключается в захвате болезнетворных микробов и продуктов распада тканей и уничтожении их внутри клетки с помощью лизосомных ферментов, находящихся в гранулах. Эти гранулоциты борются в основном с бактериями и грибами и в меньшей степени с вирусами. Из нейтрофилов и их остатков состоит гной. Лизосомные ферменты во время распада нейтрофилов высвобождаются и размягчают близлежащие ткани, формируя таким образом гнойный очаг.

Нейтрофил – это ядерная клетка округлой формы, достигающая в диаметре 10 мкм. Ядро может иметь вид палочки или состоять из нескольких сегментов (от трех до пяти), соединенных тяжами. Увеличение количества сегментов (до 8-12 и более) говорит о патологии. Таким образом, нейтрофилы могут быть палочкоядерными или сегментоядерными. Первые – это молодые клетки, вторые – зрелые. Клетки с сегментированным ядром составляют до 65 % от всех лейкоцитов, палочкоядерных в крови здорового человека – не более 5 %.

В цитоплазме находится порядка 250 разновидностей гранул, содержащих вещества, благодаря которым нейтрофил выполняет свои функции. Это молекулы белка, влияющие на обменные процессы (ферменты), регуляторные молекулы, контролирующие работу нейтрофилов, вещества, разрушающие бактерии и другие вредные агенты.

Образуются эти гранулоциты в костном мозге из нейтрофильных миелобластов. Зрелая клетка находится в мозге 5 дней, затем поступает в кровь и живет здесь до 10 часов. Из сосудистого русла нейтрофилы попадают в ткани, где находятся двое-трое суток, далее они попадают в печень и селезенку, где разрушаются.

Этих клеток в крови очень мало – не более 1 % от всего количества лейкоцитов. Они имеют округлую форму и сегментированное или палочкообразное ядро. Их диаметр достигает 7-11 мкм. Внутри цитоплазмы темно-фиолетовые гранулы разной величины. Название получили в связи с тем, что их гранулы окрашиваются красителями со щелочной, или основной (basic), реакцией. Гранулы базофила содержат ферменты и другие вещества, принимающие участие в развитии воспаления.

Их основная функция – выделение гистамина и гепарина и участие в формировании воспалительных и аллергических реакций, в том числе немедленного типа (анафилактический шок). Кроме этого, они способны уменьшить свертываемость крови.

Образуются в костном мозге из базофильных миелобластов. После созревания они попадают в кровь, где находятся около двух суток, затем уходят в ткани. Что происходит дальше до сих пор неизвестно.

Эти гранулоциты составляют примерно 2-5 % от общего числа белых клеток. Их гранулы окрашиваются кислым красителем – эозином.

У них округлая форма и слабо окрашенное ядро, состоящее из сегментов одинаковой величины (обычно двух, реже – трех). В диаметре эозинофилы достигают 10-11 мкм. Их цитоплазма окрашивается в бледно-голубой цвет и почти незаметна среди большого количества крупных круглых гранул желто-красного цвета.

Образуются эти клетки в костном мозге, их предшественники – эозинофильные миелобласты. В их гранулах содержатся ферменты, белки и фосфолипиды. Созревший эозинофил живет в костном мозге несколько дней, после попадания в кровь находится в ней до 8 часов, затем перемещается в ткани, имеющие контакт с внешней средой (слизистые оболочки).

Это круглые клетки с большим ядром, занимающим большую часть цитоплазмы. Их диаметр составляет 7 до 10 мкм. Ядро бывает круглым, овальным или бобовидным, имеет грубую структуру. Состоит их комков оксихроматина и базироматина, напоминающих глыбы. Ядро может быть темно-фиолетовым или светло-фиолетовым, иногда в нем присутствуют светлые вкрапления в виде ядрышек. Цитоплазма окрашена в светло-синий цвет, вокруг ядра она более светлая. В некоторых лимфоцитах цитоплазма имеет азурофильную зернистость, которая при окрашивании становится красной.

В крови циркулируют два вида зрелых лимфоцитов:

  • Узкоплазменные. У них грубое темно-фиолетовое ядро и цитоплазма в виде узкого ободка синего цвета.
  • Широкоплазменные. В этом случае ядро имеет более бледную окраску и бобовидную форму. Ободок цитоплазмы достаточно широкий, серо-синего цвета, с редкими аузурофильными гранулами.

Из атипичных лимфоцитов в крови можно обнаружить:

  • Мелкие клетки с едва просматривающейся цитоплазмой и пикнотическим ядром.
  • Клетки с вакуолями в цитоплазме или ядре.
  • Клетки с дольчатыми, почкообразными, имеющими зазубрины ядрами.
  • Голые ядра.

Образуются лимфоциты в костном мозге из лимфобластов и в процессе созревания проходят несколько этапов деления. Полное его созревание происходит в тимусе, лимфатических узлах и селезенке. Лимфоциты – это иммунные клетки, обеспечивающие иммунные реакции. Различают T-лимфоциты (80 % от общего числа) и B-лимфоциты (20 %). Первые прошли созревание в тимусе, вторые – в селезенке и лимфатических узлах. B-лимфоциты крупнее по размерам, чем T-лимфоциты. Продолжительность жизни этих лейкоцитов до 90 дней. Кровь для них – транспортная среда, посредством которой они попадают в ткани, где требуется их помощь.

Действия T-лимфоцитов и B-лимфоцитов различные, хотя и те, и другие принимают участие в формировании иммунных реакций.

Первые занимаются уничтожением вредных агентов, как правило, вирусов, путем фагоцитоза. Иммунные реакции, в которых они участвуют, являются неспецифической резистентностью, поскольку действия T-лимфоцитов одинаковы для всех вредных агентов.

По выполняемым действиям T-лимфоциты делятся на три вида:

  • T-хелперы. Их главная задача – помогать B-лимфоцитам, но в некоторых случаях они могут выполнять роль киллеров.
  • T-киллеры. Уничтожают вредных агентов: чужеродные, раковые и мутированные клетки, возбудителей инфекций.
  • T-супрессоры. Угнетают или блокируют слишком активные реакции B-лимфоцитов.

B-лимфоциты действуют иначе: против болезнетворных микроорганизмов они вырабатывают антитела – иммуноглобулины. Происходит это следующим образом: в ответ на действия вредных агентов они вступают во взаимодействие с моноцитами и T-лимфоцитами и превращаются в плазматические клетки, продуцирующие антитела, которые распознают соответствующие антигены и связывают их. Для каждого вида микробов эти белки специфические и способны уничтожить только определенный вид, поэтому резистентность, которую формируют эти лимфоциты, специфическая, и направлена она преимущественно против бактерий.

Эти клетки обеспечивают устойчивость организма к тем или иным вредным микроорганизмам, что принято называть иммунитетом. То есть, встретившись с вредоносным агентом, B-лимфоциты создают клетки памяти, которые эту устойчивость и формируют. Того же самого – формирования клеток памяти – добиваются прививками против инфекционных болезней. В этом случае вводится слабый микроб, чтобы человек легко перенес заболевание, и в результате образуются клетки памяти. Они могут остаться на всю жизнь или на какой-то определенный период, по истечении которого требуется прививку повторить.

Моноциты – самые крупные из лейкоцитов. Их количество составляет от 2 до 9 % от всех белых кровяных клеток. Их диаметр доходит до 20 мкм. Ядро моноцита крупное, занимает почти всю цитоплазму, может быть круглым, бобовидным, иметь форму гриба, бабочки. При окрашивании становится красно-фиолетовым. Цитоплазма дымчатая, синевато-дымчатая, реже синяя. Обычно она имеет азурофильную мелкую зернистость. В ней могут находиться вакуоли (пустоты), пигментные зерна, фагоцитированные клетки.

Моноциты производятся в костном мозге из монобластов. После созревания сразу оказываются в крови и находятся там до 4 суток. Часть этих лейкоцитов погибает, часть перемещается в ткани, где дозревают и превращаются в макрофагов. Это самые крупные клетки с большим круглым или овальным ядром, голубой цитоплазмой и большим числом вакуолей, из-за чего кажутся пенистыми. Продолжительность жизни макрофагов – несколько месяцев. Они могут постоянно находиться в одном месте (резидентные клетки) или перемещаться (блуждающие).

Моноциты образуют регуляторные молекулы и ферменты. Они способны формировать воспалительную реакцию, но также могут и тормозить ее. Кроме этого, они участвуют в процессе заживления ран, помогая ускорить его, способствуют восстановлению нервных волокон и костной ткани. Главная их функция – фагоцитоз. Моноциты уничтожают вредные бактерии и сдерживают размножение вирусов. Они способны выполнять команды, но не могут различать специфические антигены.

Эти клетки крови представляют собой маленькие безъядерные пластинки и могут иметь круглую или овальную форму. Во время активации, когда они находятся у поврежденной стенки сосуда, у них образуются выросты, поэтому они выглядят как звезды. В тромбоцитах есть микротрубочки, митохондрии, рибосомы, специфические гранулы, содержащие вещества, необходимые для свертывания крови. Эти клетки снабжены трехслойной мембраной.

Производятся тромбоциты в костном мозге, но совершенно другим путем, чем остальные клетки. Кровяные пластинки образуются из самых крупных клеток мозга – мегакариоцитов, которые, в свою очередь, образовались из мегакариобластов. У мегакариоцитов очень большая цитоплазма. В ней после созревания клетки появляются мембраны, разделяющие ее на фрагменты, которые начинают отделяться, и таким образом появляются тромбоциты. Они выходят из костного мозга в кровь, находятся в ней 8-10 дней, затем погибают в селезенке, легких, печени.

Кровяные пластинки могут иметь разные размеры:

  • самые мелкие – микроформы, их диаметр не превышает 1,5 мкм;
  • нормоформы достигают 2-4 мкм;
  • макроформы – 5 мкм;
  • мегалоформы – 6-10 мкм.

Тромбоциты выполняют очень важную функцию – они участвуют в формировании кровяного сгустка, который закрывает повреждение в сосуде, тем самым не давая крови вытекать. Кроме этого, они поддерживают целостность стенки сосуда, способствуют быстрейшему ее восстановлению после повреждения. Когда начинается кровотечение, тромбоциты прилипают к краю повреждения, пока отверстие не будет полностью закрыто. Налипшие пластинки начинают разрушаться и выделять ферменты, которые воздействуют на плазму крови . В результате образуются нерастворимые нити фибрина, плотно закрывающие место повреждения.

Заключение

Клетки крови имеют сложное строение, и каждый вид выполняет определенную работу: от транспортировки газов и веществ до выработки антител против чужеродных микроорганизмов. Их свойства и функции на сегодняшний день изучены не до конца. Для нормальной жизнедеятельности человека необходимо определенное количество каждого вида клеток. По их количественным и качественным изменениям медики имеют возможность заподозрить развитие патологий. Состав крови – это первое, что изучает врач при обращении пациента.

Объём крови в организме взрослого человека - около 5 л. В крови различают 2 компонента: плазму (межклеточное вещество) - 55- 60 % объёма крови (около 3 л) и форменные элементы - 40-45 % объёма крови. Плазма состоит из воды 90%, органических 9% и неорганических 1% веществ. Белки составляют 6% всех веществ плазмы, среди них преобладают альбумины, глобулины и фибриноген. Э ритроциты (красные кровяные тельца) - 4,3-5,3 у мужчин, и 3,9-4,5 10 12 /л у женщин, лейкоциты (белые кровяные клетки) - 4,8-7,7 10 9 /л, тромбоциты (кровяные пластинки) - 230-350 10 9 /л. Гемогр а мма - клинический анализ крови. Включает данные о количестве всех форменных элементов крови, их морфологических особенностях, СОЭ, содержании гемоглобина, цветном показателе, гематокритном числе, соотношении различных видов лейкоцитов и др. Функции крови Транспортная. Поддержание гомеостаза. Защитная функция. Гемокоагуляция. Мезодермальная паренхи́ма , или мезенхи́ма - зародышеваясоединительная тканьбольшинства многоклеточных животных и человека. Мезенхима возникает за счёт клеток разных зародышевых листков (эктодермы, энтодермы и мезодермы). Из мезенхимы образуются соединительная ткань,кровеносные сосуды, главные мышцы, висцеральный скелет, пигментные клетки и нижний слой соединительнотканной части кожи.

2. Эритроциты. Эритроциты (красные кровяные тельца) - безъядерные форменные элементы крови, содержащие гемоглобин. Основная функция эритроцитов - транспортировка кислорода и углекислого газа. Эритроциты составляют основную массу форменных элементов крови. Двояковогнутый диск эритроцита обеспечивает максимальное соотношение площади поверхности к объему. Помимо участия в тканевом дыхании, эритроциты выполняют питательную и защитную функции - они доставляют питательные вещества к клеткам организма, а также, связывают токсины и переносят на своей поверхности антитела. Кроме этого, эритроциты обеспечивают поддержание кислотно-основного равновесия в крови. Содержащиеся в эритроцитах ферменты катализируют жизненно важные биохимические процессы. Эритроциты принимают участие в процессе свертывания крови. Средний диаметр эритроцитов человека 7-8 мкм. Средняя продолжительность жизни эритроцитов составляет 3-4 месяца. Старые эритроциты разрушаются в селезенке. На смену умершим эритроцитам приходят молодые формы эритроцитов – ретикулоциты.. В норме их содержится в крови 0,2-1,2% от общего числа эритроцитов. Ретику лоциты содержат зернисто-сетчатые структуры - стареющие митохондрии, остатки эндоплазматической сети и рибосом. Наличие зернисто-сетчатых структур выявляется при специальной окраске - крезиловой синькой. 3 Лейкоциты. Ядерные клетки шаровидной формы по размеру - крупнее эритроцитов. В 1 л крови взрослого человека содержится 4,8-7,7x 10 9 . В цитоплазме лейкоцитов находятся гранулы первичные азурофильные (лизосомы) и вторичные. В зависимости от типа гранул лейкоциты делят на гранулоциты (зернистые) и агранулоциты (незернистые). Гранулоциты (нейтрофилы, базофилы и эозинофилы) содержат специфические и неспецифические гранулы. Агранулоциты (моноциты и лимфоциты) содержат только неспецифические азурофильные гранулы.Лейкоциты имеют сократительные белки (актин, миозин) и способны выходить из кровеносных сосудов, проникая между эндотелиальными клетками. Лейкоциты участвуют в защитных реакциях, уничтожая микроорганизмы и захватывая инородные частицы, осуществляя реакции гуморального и клеточного иммунитета.Лейкоцитарная формула (лейкограмма) - процентное соотношение различных видов лейкоцитов, определяемое при подсчёте их в окрашенном мазке крови под микроскопом. Лейкоцитарная формула здорового взрослого человека (предельные колебания, %)

5. Лимфоциты и моноциты. Лимфоциты: В нормальных условиях 27-45%. Клетки размером с эритроцит. Продолжительность жизни лимфоцитов колеблется в широких пределах от нескольких часов до 5 лет. Лимфоциты играют центральную роль в иммунных реакциях. Лимфоциты выходят из сосудов в соединительную ткань в ответ на специфические сигналы. Лимфоциты могут мигрировать через базальную мембрану эпителиев и внедряться в эпителии. Ядро занимает большую часть клетки, имеет круглую, овальную или слегка бобовидную форму. Структура хроматина компактная, ядро производит впечатление глыбчатого. Цитоплазма в виде узкой каймы, окрашивается базофильно в голубой цвет. В части клеток в цитоплазме обнаруживается окрашивающаяся в вишневый цвет азурофильная зернистость лимфоцитов. Лимфоциты подразделяют на различные категории по их величине: малые (4,.5-6 мкм), средние (7-10 мкм) и большие (10-18 мкм). К лимфоцитам относят сходные морфологически, но различающиеся функционально клетки. Выделяют следующие типы: В-лимфоциты, Т-лимфоциты (дифференцировка в тимусе) и NК-клетки. Т – лимфоциты это преимущественно лимфоциты крови (80%). Клетка предшественница Т – лимфоцитов поступает в тимус из красного костного мозга. Зрелые лимфоциты покидают тимус и их обнаруживают в периферической крови или лимфоидных органах В лимфоциты составляют 10% лимфоцитов крови. Плазматические клетки, в которые они дифференцируются, способны вырабатывать против конкретных антител соответствующие антигены. NK клетки - не Т, и не В лимфоциты. Составляют примерно 10% от всех лимфоцитов. Содержат цитолитические гранулы, уничтожающие трансформированные инфицированные вирусом и чужеродные клетки. Моноциты: Самые крупные лейкоциты размером от 12 до 20 мкм. Содержание в условиях нормы 4-9%. Ядро большое, рыхлое, с неравномерным распределением хроматина. Форма ядра бобовидная лопастовидная, подковообразная, реже круглое или овальное. Довольно широкая кайма цитоплазмы окрашивающейся менее базофильно чем у лимфоцитов. Может обнаруживаться мелкая азурофильная зернистость. В цитоплазме содержатся многочисленные лизосомы и вакуоли. Имеются мелкие удлиненные митохондрии. Комплекс Гольджи развит хорошо. Главная функция моноцитов и образующихся из них макрофагов – фагоцитоз. В переваривании участвуют лизосомные ферменты, а также формируемые внутриклеточно перекиси. Структуры, определяющие особенности клеток иммунной системы, обладают антигенными свойствами. Они получили название «Cluster of differentiation» (показатель дифференцировки) и обозначение CD.

6. Тромбоциты: это безъядерные фрагменты цитоплазмы, отделившиеся в красном костном мозгу от мегакариоцитов (гигантских клеток) и циркулирующие в крови. Имеют размер 2-4 мкм. Общее количество в крови 230-350 10 9 на 1л. Продолжительность жизни 4 дня. В центральной части тромбоцит содержит грануломер - выраженную зернистость, которая представлена гранулами, глыбками гликогена, ЭПС, митохондриями и является азурофильной. Периферическая часть тромбоцита - гомогенный гиаломер, который окрашивается по-разному в зависимости от возраста тромбоцита. На поверхности тромбоцита имеется большое количество фосфатных групп - компонентов мембранных фосфолипидов и фосфопротеинов.

7. Эмбриональный гемопоэз. Гемопоэз (лат. haemopoesis ), кроветворение - это процесс образования, развития и созревания клеток крови - лейкоцитов , эритроцитов , тромбоцитов у позвоночных . Выделяют: эмбриональный (внутриутробный) гемопоэз; постэмбриональный гемопоэз. Эмбриональный гемопоэз: В развитии крови как ткани в эмбриональный период можно выделить 3 основных этапа, последовательно сменяющих друг друга – мезобластический, гепатолиенальный и медуллярный. Первый, мезобластический этап – это появление клеток крови во внезародышевых органах, а именно в мезенхиме стенки желточного мешка , мезенхиме хориона и стебля . При этом появляется первая генерация стволовых клеток крови (СКК). Мезобластический этап протекает с 3-й по 9-ю неделю развития зародыша человека. Второй, гепатолиенальный этап начинается с 5-6-й недели развития плода, когда печень становится основным органом гемопоэза, в ней образуется вторая генерация стволовых клеток крови. Кроветворение в печени достигает максимума через 5 мес и завершается перед рождением. СКК печени заселяют тимус, селезенку и лимфатические узлы. Третий, медуллярный (костномозговой) этап - это появление третьей генерации стволовых клеток крови в красном костном мозге , где гемопоэз начинается с 10-й недели и постепенно нарастает к рождению. После рождения костный мозг становится центральным органом гемопоэза. Постэмбриональный гемопоэз: Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови, который компенсирует физиологическое разрушение дифференцированных клеток. Он подразделяется на миелопоэз и лимфопоэз. Миелопоэз происходит в миелоидной ткани, расположенной в эпифизах трубчатых и полостях многих губчатых костей. Здесь развиваются эритроциты, гранулоциты, моноциты, тромбоциты, а также предшественники лимфоцитов. В миелоидной ткани находятся стволовые клетки крови и соединительной ткани. Предшественники лимфоцитов постепенно мигрируют и заселяют тимус, селезенку, лимфоузлы и некоторые другие органы. Лимфопоэз происходит в лимфоидной ткани, которая имеет несколько разновидностей, представленных в тимусе, селезенке, лимфоузлах. Она выполняет функции образования T- и B-лимфоцитов и иммуноцитов (например, плазмоцитов). Миелоидная и лимфоидная ткани являются разновидностями соединительной ткани, т.е. относятся к тканям внутренней среды. В них представлены две основные клеточные линии -клетки ретикулярной ткани и гемопоэтические клетки .

9. Эритроцитопоэз. начинается со стволовой кроветворной клетки. Через стадию колониеобразующей мультипотентной клетки (КОЕТЭММ) формируются бурстобразующая (БОЭ-Э) и далее колониеобразующая единица эритроцитов (КОЕ-Э). Клетки этих колоний чувствительны к факторам регуляции пролиферации и дифференцировки..В IV-й класс включаются базофильный , полихроматофильный и оксифильный эритробласты. Проэритроциты, потом ретикулоциты сосавляют V-й класс и, наконец, формируются эритроциты (VI-й класс). В эритропоэзе на стадии оксифильного эритробласта происходит выталкивание ядра. В целом цикл развития эритроцита до выхода ретикулоцита в кровь продолжается до 12 суток. Общее направление эритропоэза характеризуется следующими основными структурно-функциональными изменениями: постепенным уменьшением размеров клетки, накоплением в цитоплазме гемоглобина, редукцией органелл, снижением базофилии и повышением оксифилии цитоплазмы, уплотнением ядра с последующим его выделением из состава клетки. В эритробластических островках эритробласты поглощают путем микропиноцитоза железо, поставляемое макрофагами, для синтеза гемоглобина. Развитие эритроцитов происходит в миелоидной ткани красного костного мозга. В периферическую кровь поступают только зрелые эритроциты и немного ретикулоцитов.

10. Гранулоцитопоэз . IV класс миелобласт. Размер 12-25 мкм. V класс промиелоцит - ядро грубой структуры, наблюдаются ядрышки. Цитоплазма резко базофильна. Появляется неспецифическая зернистость. Миелоцит - Размер 10-20 мкм. Ядро круглое или овальное, ядрышки не обнаруживаются. Цитоплазма содержит неспецифическую и специфическую зернистость. В зависимости от вида специфической зернистости выделяют нейтрофильные, эозинофильные и базофильные миелоциты. Метамиелоциты (юные формы) имеют ряд общих свойств: не делятся, обнаруживаются в крови, содержат ядро бобовидной формы. Класс VI Палочкоядерные клетки - ядро похоже на толстую изогнутую палочку без перемычек. Сегментоядерные клетки – ядро состоит из нескольких сегментов, разделённых узкими перетяжками.

11. Моноцитопоэз. V класс– промоноцит. Ядро - круглое, большое, а в цитоплазме нет гранул. Конечной стадией дифференцировки клеток моноцитарного ряда является не моноцит, а макрофаг, находящийся вне сосудистого русла. Дифференцировка клеток при моноцитопоэзе характеризуется увеличением размеров клетки, приобретением ядром бобовидной формы, снижением базофилии цитоплазмы, превращением моноцита в макрофаг. Главная функция моноцитов и образующихся из них макрофагов – фагоцитоз. Тромбоцитопоэз. Мегакариобласт - незрелая гигантская клетка костного мозга. Размер 25-40 мкм. Ядро большое неправильной формы, содержит до трех ядрышек. Цитоплазма базофильна, узкой полоской окружает ядро. Мегакариоцит гигантская клетка ККМ 40-45 мкм. При переходе от мегакариобласта к промегакариоциту ядро становится полиплоидным. Форма ядра неправильная бухтообразная. Цитоплазма базофильная содержит азурофильную зернистость. Мегакариоцит "проталкивает" часть своей цитоплазмы (в виде отростков) в щели капилляров красного костного мозга. После этого фрагменты цитоплазмы отделяются в виде пластинок ("тромбоцитов"). Остающаяся ядросодержащая часть мегакариоцита может восстанавливать объём цитоплазмы и образовывать новые тромбоциты.

13Лимфоцито и плазмоцитопоэз. лимфоцитопоэз в эмбриональном и постэмбриональном периодах осуществляется поэтапно, сменяя разные лимфоидные органы. В Т- и в В-лимфоцитопоэзе выделяют три этапа:

Костномозговой этап;

    этап антиген-независимой дифференцировки, осуществляемый в центральных иммунных органах;

    этап антиген-зависимой дифференцировки, осуществляемый в периферических лимфоидных органах. На первом этапе дифференцировки из стволовых клеток образуются клетки-предшественницы соответственно Т- и В-лимфоцитопоэза. На втором этапе образуются лимфоциты, способные только распознавать антигены. На третьем этапе из клеток второго этапа формируются эффекторные клетки, способные уничтожить и нейтрализовать антиген. Процесс развития Т- и В-лимфоцитов имеет как общие закономерности, так и существенные особенности и потому подлежит отдельному рассмотрению.

    Первый этап Т-лимфоцитопоэза осуществляется в лимфоидной ткани красного костного мозга, где образуются следующие классы клеток:

    1 класс - стволовые клетки; 2 класс - полустволовые клетки-предшественницы лимфоцитопоэза; 3 класс - унипотентные Т-поэтинчувствительные клетки-предшественницы Т-лимфоцитопоэза, эти клетки мигрируют в кровеносное русло и с кровью достигают тимуса. Второй этап - этап антиген-независимой дифференцировки осуществляется в корковом веществе тимуса. Здесь продолжается дальнейший процесс Т-лимфоцитопоэза. Под влиянием биологически активного вещества тимозина, выделяемого стромальными клетками, унипотентные клетки превращаются в Т-лимфобласты - 4 класс, затем в Т-пролимфоциты - 5 класс, а последние в Т-лимфоциты - 6 класс. В тимусе из унипотентных клеток развиваются самостоятельно три субпопуляции Т-лимфоцитов:

  • супрессоры.

В результате второго этапа образуются рецепторные (афферентные или Т0) Т-лимфоциты - киллеры, хелперы, супрессоры. При этом лимфоциты в каждой из субпопуляций отличаются между собой разными рецепторами, однако имеются и клоны клеток, имеющие одинаковые рецепторы. В тимусе образуются Т-лимфоциты, имеющие рецепторы и к собственным антигенам, однако такие клетки здесь же разрушаются макрофагами. Третий этап - этап антиген-зависимой дифференцировки осуществляется в Т-зонах периферических лимфоидных органов - лимфоузлов, селезенки и других, где создаются условия для встречи антигена с Т-лимфоцитом (киллером, хелпером или супрессором), имеющим рецептор к данному антигену. Под влиянием соответствующего антигена Т-лимфоцит активизируется, изменяет свою морфологию и превращается в Т-лимфобласт, вернее в Т-иммунобласт, так как это уже не клетка 4 класса (образующаяся в тимусе), а клетка возникшая из лимфоцита под влиянием антигена. Процесс превращения Т-лимфоцита в Т-иммунобласт носит название реакции бласттрансформации. После этого Т-иммунобласт, возникший из Т-рецепторного киллера, хелпера или супрессора, пролиферирует и образует клон клеток. Т-киллерный иммунобласт дает клон клеток, среди которых имеются:

    Т-памяти (киллеры);

    Т-киллеры или цитотоксические лимфоциты, которые являются эффекторными клетками, обеспечивающими клеточный иммунитет, то есть защиту организма от чужеродных и генетически измененных собственных клеток. После первой встречи чужеродной клетки с рецепторным Т-лимфоцитом развивается первичный иммунный ответ - бласттрансформация, пролиферация, образование Т-киллеров и уничтожение ими чужеродной клетки. Т-клетки памяти при повторной встрече с тем же антигеном обеспечивают по тому же механизму вторичный иммунный ответ, который протекает быстрее и сильнее первичного.

14.Классификация, источники развития…. Соединительные ткани - это комплекс тканей мезенхимного происхождения , участвующих в поддержании гомеостаза внутренней среды и отличающихся от других тканей меньшей потребностью в аэробных окислительных процессах. Вместе с кровью и лимфойсоединительные ткани объединяются в т.н. «ткани внутренней среды ». Как и все ткани, они состоят из клеток и межклеточного вещества. Межклеточное вещество, в свою очередь, состоит из волокон и основного, или аморфного, вещества. Соединительная ткань составляет более половины массы тела человека. Она участвует в формировании стромы органов, прослоек между другими тканями в органах, формирует дерму кожи, скелет. Соединительные ткани формируют и анатомические образования - фасции и капсулы, сухожилия и связки, хрящи и кости. Полифункциональный характер соединительных тканей определяется сложностью их состава и организации.

Функции: Трофическая функция (в широком смысле) связана с регуляцией питания различных тканевых структур, с участием в обмене веществ и поддержанием гомеостаза внутренней среды организма. В обеспечении этой функции главную роль играет основное вещество, через которое осуществляется транспорт воды, солей, молекул питательных веществ. Защитная функция заключается в предохранении организма от механических воздействий и обезвреживании чужеродных веществ, поступающих извне или образующихся внутри организма. Это обеспечивается физической защитой (например, костной тканью), а также фагоцитарной деятельностью макрофагов и иммунокомпетентными клетками, участвующими в реакциях клеточного и гуморального иммунитета. Опорная , или биомеханическая, функция обеспечивается прежде всего коллагеновыми и эластическими волокнами, образующими волокнистые основы всех органов, а также составом и физико-химическими свойствами межклеточного вещества скелетных тканей (например, минерализацией). Чем плотнее межклеточное вещество, тем значительнее опорная, биомеханическая функция; пример - костные ткани. Пластическая функция соединительной ткани выражается в адаптации к меняющимся условиям существования, регенерации, участии в замещении дефектов органов при их повреждении (пример - формирование рубцовой ткани при заживлении ран). Морфогенетическая , или структурообразовательная, функция проявляется в формировании тканевых комплексов и обеспечении общей структурной организации органов (образование капсул, внутриорганных перегородок), а также регулирующем влиянии некоторых ее компонентов на пролиферацию и дифференцировку клеток различных тканей. Классификация: Разновидности соединительной ткани различаются между собой составом и соотношением клеток, волокон, а также физико-химическими свойствами аморфного межклеточного вещества. Соединительные ткани подразделяются на три вида:

    собственно соединительную ткань,

    соединительные ткани со специальными свойствами,

    скелетные ткани.

Собственно соединительная ткань включает:

    рыхлую волокнистую соединительную ткань;

    плотную неоформленную соединительную ткань;

    плотную оформленную соединительную ткань.

Соединительные ткани со специальными свойствами включают:

    ретикулярную ткань;

    жировые ткани;

    слизистую ткань.

Скелетные ткани включают:

    хрящевые ткани,

    костные ткани,

    цемент и дентин зуба.

(лейкоциты) и свёртываемость крови (тромбоциты) .

Энциклопедичный YouTube

    1 / 5

    ✪ 7 сокрушительных провалов палеонтологии. Ложь и фейки науки. Разоблачение учёных и научного обмана

    ✪ Большой скачок. Тайная жизнь клетки

    ✪ Наука 2.0 Большой скачок. Тайна крови.avi

    ✪ Однодневный голод. За что Осуми получил Нобелевскую премию?

    ✪ нормальная кровь (Морфологические занятия)

    Субтитры

    рекомендуем подписаться на очень интересный канал и мейдзин гатчина ссылка в описании начиная с 90-х годов прошлого века ученые сделали целый ряд открытий обнаружит костях динозавров клетки крови гемоглобин легко разрушаемое белки и фрагменты мягких тканей в частности эластичных связок и кровеносных сосудов и даже днк и радиоактивный углерод все это не оставляет камня на камне от монолита современных палеонтологических датировок алексей николаевич лунный доктор биологических наук прямо утверждает что официальные датировки завышена минимум на 2-3 порядка то есть в то тысячу раз если считать от официальных датировок то динозавры например могли существовать всего 66 тысяч лет назад один из вариантов объяснения сохранения подобных мягких тканей погребение под слоем осадочных пород при катастрофических условиях глобальном потопе учитывая это уже не кажется удивительным что все кости которые палеонтологи откопали в окрестностях хелл крик а штат монтана имели ярко выраженный трупный запах а вот хронология крамольных находок в костях динозавров в 1993 году неожиданно для себя мэри швайцер обнаруживает костях динозавров клетки крови 1990 году обнаруживают гемоглобин а также различимые кровяные клетки костях тиранозавра в 2003 году следы протеина в гости акколь цена в 2005 году эластичные связки и кровеносные сосуды 2007 году коллаген важный костный структурный белок в кости тиранозавра в 2009 году легко разрушаемое белки эластин и ламинин и снова коллаген утконосом динозавре если бы останкам было действительно столько лет сколько принято датировать в них не было бы ни одного из этих белков в 2012 году ученые сообщили об обнаружении клеток костной ткани остеоцит of белков актина и табуле на а также днк вычисленные по результатам исследований темпы распада этих белков и особенная днк указывает на то что они не могли храниться в останках динозавров в течение как предполагают 65 миллионов лет после их вымирания 2012 году ученые сообщают об обнаружении радиоактивного углерода учитывая насколько быстро распадается углерод-14 даже если бы останкам было 100000 лет в них не должно было бы остаться и следа его присутствие в 2015 году в канаде на территории парка динозавров обнаружена в костях динозавры мелового периода красные кровяные тельца и коллагеновые волокна портал крамола предлагаю вспомнить еще шесть сокрушительных провалов которые сопровождали палеонтологию в частности и теорию эволюцию в целом пилтдаунским человек в 1912 году чарльз доу то заявил что нашел вблизи английского города пил town останки челюсти череп переходные формы от примитивного получеловека полуобезьян и homo sapiens эта находка вызвала настоящую сенсацию на основе останков было написано не менее 500 докторских диссертаций пивчанский человек был торжественно водворен в британский музей палеонтологии как явное доказательство теории дарвина все бы ничего да вот в 1949 году сотрудник музея пентакли вздумал проверить останки новым методом ты соци и на флорин результат был чем оказалось что челюсти череп принадлежат разным существам через по результатам тестирования вообще не находилось земле и скорее всего принадлежит недавно усопшие обезьяне а череп находился там от силы десятки но никак не сотни или тысячи лет дальнейшее исследование показали что зубы черепа были довольно грубо обтесанные чтобы совпасть с челюстью пилтдаунским человек был тихо вынесен из музея в небраске человек в 1922 году генри fairfield осборн заявил что нашел зуб доисторического переходного вида основываясь на этом единственном зубе был реконструируем на бумаге целых горела образный человек газета london news а 24 0 7 1922 года даже опубликовал научную зарисовку целой семьи не братского человека пещере у костра в 1927 году остальные части скелета были найдены оказалось скелет принадлежал вымершим уведу американских синей фото бинга в своей книге descent of men дарвин написал что человек произошел от обезьяны эволюционисты всю свою историю пытались найти хоть одну переходную форму от обезьяны к человеку наконец 1904 году им показалось что поиски увенчались успехом в конго был найден туземец отто бинга которого причислили категория живого свидетельство переходные формы от обезьяны к человеку днк был посажен в клетку и привезён из сша где его показывали в зоопарке в бронксе на момент поимки бинго был женат и имел двух детей не вынеся позора бинго покончил жизнь самоубийством сегодня эволюционисты предпочитают замалчивать этот случай кистеперых рыб целакант до недавнего времени считалось будто скелет этой рыбы имеющие якобы пару десятков миллионов лет и являющийся гордостью эволюционистов является переходной формой от водоплавающих сухопутным животным были нарисованы фантастические рисунки выхода этой рыбы на сушу однако начиная с 1938 года пиала кант неоднократно находили в индийском океане оказалось это и по ныне живущий вид рыбы которые не делает попыток вылезти на сушу более того она никогда не всплывает на поверхность а держится на глубине не менее 140 метров под водой пекинский человек синантроп макет практически составлены под честное слово сторонников дарвина оригиналы костей на которых был восстановлен скелет пекинского человека не существуют так как были утеряны яванский человек питекантроп составлен из фрагментов костей найденных на больших расстояниях друг от друга и не известно принадлежали ли они одному и тому же существу большинство останков составлены из останков разных видов и склеены воедино хороший фантазии либо же по паре костей не без помощи той же фантазии другие же вообще являются обычным человеком homo sapiens либо обычно обезьяны плюс ко всему этому подделки вот и получили красивые картинки из спектакля под названием эволюции бетти левски и подделки рисунков эмбрионов рисунки похожих эмбрионов которые можно увидеть в учебник биологии были нарисованы немецким ученым гибким он не разбирался в биологии но придумал биогенетический закон или закон эмбриональной рекапитуляции который гласил что каждый организм за период эмбрионального развития повторяют все стадии которые его вид должен был пройти ходе эволюционного развития исходя из этой мысли он нарисовал человеческие эмбрионы в стадиях развития такими какими ему хотелось чтобы они были а именно беспозвоночным существом затем стадии рыбы собачки и потом человека рисунки деятеля были опровергнуты учеными почти сразу после их публикации более 100 лет назад многие современные эволюционисты больше не заявляют что человеческий эмбрион в своем развитии повторяют взрослые стадий этих предполагаемых эволюционных предков но все же ссылаются на рисунке гибки ли и говорят что он повторяет эмбриональной стадии однако уже известно что такое сомнительное подтверждение эволюции строится на фальшивых рисунках майка лари чество преподаватели эмбриолог из медицинской школы и больницы святого георгия в лондоне говорит об этом дополнительного обмане в статье н это me and эмбриологи известная гей кировская серия из 24 рисунков которые изображают 8 различных эмбрионов на трёх стадиях внутриутробного развития опубликованная гегелем в германии в работе интро позже не в 1874 году в связи с этим ричард он собрал международную команду для изучения фиксации внешнего вида эмбрионов различных видов позвоночных животных на той стадии на которой животные изображены на рисунках гибки ли команда собрала эмбриона 39 различных животных включая эмбрионы сумчатых из австралии древесных лягушек из пуэрто-рико змей франции и аллигатора из англии они обнаружили что эмбрионы различных видов существенно отличаются в действительности эмбрионы оказались настолько не похожи на те которые изобразил бейки что ученые пришли к однозначному выводу рисунки деятеля вообще не могли быть составлен на основе реальных эмбрионов ставьте лайк подписывайтесь на канал и делитесь этим видео больше крамольных фактов на обновленном портале крамола

История изучения

Виды

Эритроциты

Зрелые эритроциты (нормоциты) представляют собой безъядерные клетки в форме двояковогнутого диска диаметром 7-8 мкм . Эритроциты образуются в красном костном мозге, откуда попадают в кровь в незрелом виде (в виде так называемых ретикулоцитов) и достигают окончательной дифференцировки через 1-2 дня после выхода в кровоток. Продолжительность жизни эритроцита составляет 100-120 суток. Отслужившие и повреждённые эритроциты фагоцитируются макрофагами селезёнки , печени и костного мозга . Образование эритроцитов (эритропоэз) стимулируется эритропоэтином , который образуется в почках при гипоксии .

Важнейшая функция эритроцитов - дыхательная . Они переносят кислород от альвеол лёгких к тканям и углекислый газ от тканей к лёгким. Двояковогнутая форма эритроцита обеспечивает наибольшее отношение площади поверхности к объёму, что обеспечивает его максимальный газообмен с плазмой крови . Белок гемоглобин , содержащий железо , заполняет эритроциты и переносит весь кислород и около 20 % углекислого газа (остальные 80 % транспортируется в виде иона бикарбоната). Кроме того, эритроциты участвуют в свёртывании крови и адсорбируют на своей поверхности токсичные вещества . Они переносят разнообразные ферменты и витамины , аминокислоты и ряд биологически активных веществ . Наконец, на поверхности эритроцитов находятся антигены - групповые признаки крови .

Лейкоциты

Наиболее многочисленный тип лейкоцитов - нейтрофилы. После выхода из костного мозга они циркулируют в крови всего несколько часов, после чего оседают в различных тканях. Их главная функция - фагоцитоз обломков тканей и опсонизированных микроорганизмов. Таким образом, нейтрофилы, наряду с макрофагами, обеспечивают первичный неспецифический иммунный ответ .

Эозинофилы в течение нескольких дней после образования остаются в костном мозге, потом на несколько часов выходят в кровоток и далее мигрируют в ткани, контактирующие с внешней средой (слизистые оболочки дыхательных и мочеполовых путей, а также кишечника). Эозинофилы способны к фагоцитозу, задействованы в аллергических , воспалительных и антипаразитарных реакциях. Они также выделяют гистаминазы , инактивирующие гистамин , и блокируют дегрануляцию

В теле животного и человека кровь составляет внутреннюю среду организма. Это жидкая соединительная ткань, сообщающаяся со всеми клетками организма посредством кровеносных сосудов. Организм взрослой женщины содержит 4 литра крови, а мужчины - 5 литров.

Состав

Все млекопитающие, в том числе и человек, имеют сходное строение крови.
Жидкая соединительная ткань включает:

  • плазму - межклеточное вещество, состоящее из воды (90 %) и растворённых в ней органических (белки, жиры, углеводы) и неорганических (соли) веществ;
  • форменные элементы - клетки, циркулирующие в потоке плазмы.

Плазма составляет 60 % крови. Её состав остаётся неизменным за счёт постоянной работы почек и лёгких.

Плазма выполняет в организме несколько функций:

  • транспортную - переносит вещества каждой клетке;
  • выделительную - все накопленные в плазме вредные вещества выводятся через почки, а углекислый газ высвобождается наружу через лёгкие;
  • регуляторную - поддерживает постоянный химический состав организма (гомеостаз) за счёт переноса веществ;
  • температурную - поддерживает постоянную температуру тела;
  • гуморальную - разносит гормоны ко всем органам.

Рис. 1. Плазма крови.

К элементам относятся разнообразные клетки, выполняющие специфические функции. Они образуются из кроветворных стволовых клеток, вырабатываемых костным мозгом и тимусом, а также в тонком кишечнике, селезёнке, лимфатических узлах. Подробное описание клеток представлено в таблице «Кровь».

Элемент

Строение

Функции

Эритроциты

Кровяные тельца. Многочисленные двояковогнутые клетки красного цвета. Не имеют ядра. Продолжительность жизни - 120 дней. Разрушаются в печени и селезёнке

Дыхательная - переносят кислород и углекислый газ

Тромбоциты

Кровяные пластинки. Фрагменты цитоплазмы клеток костного мозга, ограниченные мембраной. Не имеют ядра

Защитная - в совокупности с белками плазмы обеспечивают свёртываемость крови, останавливая кровотечение и кровопотерю

Лейкоциты

Белые клетки. По размеру превышают эритроцитов. Имеют ядро. Способны изменять свою форму и передвигаться. Одна из разновидностей - лимфоциты. Могут быть трёх видов: B-, T- и NK-клетки. Вырабатывают антитела - белковые соединения, препятствующие размножению бактерий и вирусов в организме

Иммунная - захватывают и уничтожают инородные частицы, попавшие в кровь

Рис. 2. Форменные элементы.

Основными клетками крови являются эритроциты. Они имеют жёлто-зелёный цвет, но из-за наличия в составе гемоглобина (красного пигмента) окрашиваются в красный цвет. Гемоглобин содержит железо, которое связывает кислород, образуя оксигемоглобин, и отдаёт его клеткам организма в процессе дыхания.

Система

Кровь циркулирует по телу благодаря кровеносной системе, состоящей из сердца и кровеносных сосудов. Сокращения сердца продвигают кровь по сосудам. Элементы крови не выходят за пределы сосудов. Однако плазма может выделяться через капилляры наружу, превращаясь в тканевую жидкость.

ТОП-4 статьи которые читают вместе с этой

Кровообращение - замкнутый путь потока крови по сосудам в организме - включает два цикла:

  • малый круг от правого желудочка сердца до левого предсердия;
  • большой круг от левого желудочка до правого предсердия.

Малый или лёгочный круг проходит через лёгкие, где гемоглобин насыщается кислородом. Затем кровь попадает в левое предсердие, а оттуда - в левый желудочек. Здесь начинается большой круг, охватывающий все органы и ткани организма. Насыщенная кислородом кровь (артериальная) разносит кислород и забирает углекислый газ, превращаясь в венозную кровь.

Рис. 3. Кровообращение в организме человека.

У всех позвоночных кровь красного цвета. У моллюсков и членистоногих кровь называется гемолимфой. Эта жидкость содержит гемоцианин, который на воздухе придаёт гемолимфе голубой цвет за счёт содержания меди.

Что мы узнали?

Из статьи по биологии 8 класса мы узнали о составе крови, о видах и особенностях строения кровяных клеток, а также о снабжении органов и тканей кровью. Функции дыхания, свёртываемости крови, иммунной защиты выполняют соответственно эритроциты, тромбоциты, лейкоциты - элементы крови. Кровяные клетки разносятся к тканям и органам посредством плазмы - раствора белков, углеводов, жиров и солей.

Тест по теме

Оценка доклада

Средняя оценка: 4.5 . Всего получено оценок: 745.

Эритроциты у человека и млекопитающих представляют собой безъядерные клетки, утратившие в процессе фило- и онтогенеза ядро и большинство органелл. Эритроциты являются высокодифференцированными постклеточными структурами, неспособными к делению.

Формирование эритроцитов (эритропоэз) происходит в красном костном мозге. Продолжительность их жизни - 3-4 месяца, разрушение (гемолиз) происходит в печени и селезенке. Прежде чем выйти в кровь, эритроциты последовательно проходят несколько стадий пролиферации и дифференцировки в составе эритрона - красного ростка кроветворения.

Обычно эритроциты имеют форму двояковогнутого диска и содержат в основном белок гемоглобин, который осуществляет связывание с газом.

Основная функция эритроцитов - дыхательная - транспортировка кислорода и углекислоты. Кроме того, эритроциты участвуют в транспорте аминокислот, антител, токсинов и ряда лекарственных веществ, адсорбируя их на поверхности плазмолеммы.

Нормальное количество эритроцитов: у мужчин - (4,0-5,5)10 12 /л, у женщин - (3,7-4,7) 10 12 /л.

Количество эритроцитов варьируется в зависимости от возраста и состояния здоровья. Повышение числа эритроцитов чаще всего связано с кислородным голоданием тканей или легочными заболеваниями, врожденными пороками сердца; может возникать при курении, нарушении эритропоэза из-за опухоли или кисты. Понижение количества эритроцитов является непосредственным указанием на анемию (малокровие). В запущенных случаях при ряде анемий отмечается неоднородность эритроцитов по величине и форме, в частности при железодефицитной анемии у беременных.

Иногда в гем включается атом трехвалентного железа вместо двухвалентного, и образуется метгемоглобин, который так прочно связывает кислород, что не способен отдавать его тканям, в результате чего возникает кислородное голодание. Образование метгемоглобина в эритроцитах может быть наследственным или приобретенным в результате воз

действия на эритроциты сильных окислителей, таких как нитраты, некоторые лекарственные препараты - сульфаниламиды, местные анестетики (лидокаин).

Лейкоциты (белые клетки крови)

Источником лейкоцитов является красный костный мозг.

Лейкоциты различаются по структуре и назначению. Эти клетки имеют ядро. Среди них различают гранулоциты (нейтрофильные, эозинофильные, базофильные), а также лимфоциты и моноциты. Гранулоциты содержат гранулы, которые окрашиваются специальными красителями и видны под микроскопом. Гранулы нейтрофилов - серые, эозинофилов - оранжевые, базофилов - фиолетовые.

Основное назначение нейтрофилов - защита организма от инфекций. Они фагоцитируют бактерии, то есть "заглатывают" и "переваривают" их. Кроме того, нейтрофилы могут вырабатывать особые антимикробные вещества.

Эозинофилы удаляют избытки гистамина, который появляется при аллергических заболеваниях. При заражении гельминтами эозинофилы проникают в просвет кишечника, разрушаются там, в результате высвобождаются вещества, токсичные для гельминтов.

Базофилы вместе с другими лейкоцитами активно участвуют в воспалительном процессе, выделяя гепарин, гистамин, серотонин. Два последних вещества оказывают влияние на сосудистую проницаемость и тонус гладкой мускулатуры, резко изменяющийся в очаге воспаления. Гепарин связывает белки, вышедшие из клеток в межуточное вещество, и ослабляет их неблагоприятное влияние на цитоплазматические мембраны.

Лимфоциты являются центральным звеном иммунной системы организма. Они осуществляют формирование специфического иммунитета, синтез защитных антител, лизис чужеродных клеток, реакцию отторжения трансплантата, обеспечивают иммунную память. Дифференцировку лимфоциты проходят в тканях. Лимфоциты, созревание которых происходит в вилочковой железе, называются Т-лимфоцитами (тимусзависимые). Различают несколько форм Т-лимфоцитов. Т-киллеры (убийцы) осуществляют реакции клеточного иммунитета, лизируя чужеродные клетки, возбудителей инфекционных заболеваний, опухолевые клетки, клетки - мутанты. Т-хелперы (помощники), взаимодействуя с В-лимфоцитами, превращают их в плазматические клетки, т. с. помогают течению гуморального иммунитета. Т-супрессоры (угнетатели) блокируют чрезмерные реакции В-лимфоцигов. Имеются также Т-хелперы и Т-супрессоры, регулирующие клеточный иммунитет. Т-клетки памяти хранят информацию о ранее действующих антигенах. В-лимфоциты (бурсозависимые) проходят дифференцировку у человека в лимфоидной ткани кишечника, ткани небных и глоточных миндалин. В-лимфоциты осуществляют реакции гуморального иммунитета. Большинство В-лимфоцитов являются антитело- продуцентами. В-лимфоциты в ответ на действие антигенов в результате сложных взаимодействий с Т-лимфоцитами и моноцитами превращаются в плазматические клетки. Плазматические клетки вырабатывают антитела, которые распознают и специфически связывают соответствующие антигены. Различают 5 основных классов антител, или иммуноглобулинов: JgA, Jg G, Jg М, Jg D, JgЕ. Среди В-лимфоцитов также выделяют клетки-киллеры, хелперы, супрессоры и клетки иммунологической памяти. О-лимфоциты (нулевые) не проходят дифференцировку и являются как бы резервом Т- и В-лимфоцитов.

Моноциты - недостаточно зрелые клетки. Свои основные функции они начинают выполнять, когда превращаются в макрофаги - большие подвижные клетки, которые находятся практически во всех органах и тканях. Макрофаги - своеобразные санитары. Они "поедают" бактерии, погибшие клетки, причем могут "заглатывать" частицы, почти равные им по размерам. Макрофаги, как уже указывалось, помогают лимфоцитам в осуществлении иммунных реакций.

У здорового человека число лейкоцитов в крови непостоянно. После тяжелой физической работы, приема горячей ванны, у женщин в период беременности, в процессе родов и перед началом менструации оно увеличивается. Это же происходит после приема пищи. Поэтому, чтобы результаты анализа были объективными, его нужно сдавать утром натощак, не завтракать, можно выпить только стакан воды.

Увеличение числа лейкоцитов называют лейкоцитозом, уменьшение - лейкопенией. Наиболее часто лейкоцитоз возникает у больных с инфекциями (пневмония, скарлатина), гнойными заболеваниями (аппендицит, перитонит, флегмона), сильными ожогами. Лейкоцитоз развивается в течение 1-2 ч после начала интенсивного кровотечения. Приступ подагры также может сопровождаться лейкоцитозом. При некоторых лейкозах число лейкоцитов возрастает в несколько десятков раз.

Хотя проникновение микробов в организм человека обычно стимулирует иммунную систему, в результате чего число лейкоцитов в крови увеличивается, при некоторых инфекциях отмечается противоположная картина. Если защитные силы организма истощены и иммунная система не способна бороться, число лейкоцитов снижается. Так, например, лейкопения при сепсисе свидетельствует о тяжелом состоянии больного и неблагоприятном прогнозе. Некоторые инфекции (брюшной тиф, корь, краснуха, ветряная оспа, малярия, бруцеллез, грипп, вирусный

гепатит) подавляют иммунную систему, поэтому они могут сопровождаться лейкопенией. Снижение числа лейкоцитов возможно также при системной красной волчанке, некоторых лейкозах и метастазах опухолей костей.

Тромбоциты (кровяные пластинки)

Тоже образуются из клеток красного костного мозга. Представляют собой плоские клетки неправильной округлой формы диаметром 2-5 мкм. Тромбоциты человека не имеют ядер, это фрагменты клеток, которые меньше половины эритроцита. Количество тромбоцитов в крови человека составляет (180-320)Т0 9 /л. Имеют место суточные колебания: днем тромбоцитов больше, чем ночью. Увеличение содержания тромбоцитов в периферической крови называется тромбоцитозом, уменьшение - тромбоцитопенией.

Главной функцией тромбоцитов является участие в гемостазе. Тромбоциты помогают "ремонтировать" кровеносные сосуды, прикрепляясь к поврежденным стенкам, а также участвуют в свертывании крови, которое предотвращает кровотечение и выход крови из кровеносного сосуда.

Способность тромбоцитов прилипать к чужеродной поверхности (адгезия), а также склеиваться между собой (агрегация) происходит под влиянием разнообразных причин. Тромбоциты продуцируют и выделяют ряд биологически активных веществ: серотонин (вещество, вызывающее сужение кровеносных сосудов, уменьшение кровотока), адреналин, норадреналин, а также вещества, получившие название пластинчатых факторов свертывания крови.