Общая характеристика органических веществ. Липиды. Липиды, их роль в жизнедеятельности организма Какие витамины и гормоны участвуют в регуляции уровня липидов


Спасибо

Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Что за вещества липиды?

Липиды представляют собой одну из групп органических соединений, имеющую огромное значение для живых организмов. По химической структуре все липиды делятся на простые и сложные. Молекула простых липидов состоит из спирта и желчных кислот, в то время как в состав сложных липидов входят и другие атомы или соединения.

В целом, липиды имеют огромное значение для человека. Эти вещества входят в значительную часть продуктов питания , используются в медицине и фармации, играют важную роль во многих отраслях промышленности. В живом организме липиды в том или ином виде входят в состав всех клеток. С точки зрения питания – это очень важный источник энергии.

Какая разница между липидами и жирами?

В принципе, термин «липиды» происходит от греческого корня, означающего «жир», однако эти определения все же имеют некоторые отличия. Липиды являются более обширной группой веществ, в то время как под жирами понимают лишь некоторые виды липидов. Синонимом «жиров» являются «триглицериды », которые получаются из соединения спирта глицерина и карбоновых кислот. Как липиды в целом, так и триглицериды в частности играют значительную роль в биологических процессах.

Липиды в организме человека

Липиды входят в состав практически всех тканей организма. Их молекулы есть в любой живой клетке, и без этих веществ попросту невозможна жизнь. В организме человека встречается очень много различных липидов. Каждый вид или класс этих соединений имеет свои функции. От нормального поступления и образования липидов зависит множество биологических процессов.

С точки зрения биохимии, липиды принимают участие в следующих важнейших процессах:

  • выработка организмом энергии;
  • деление клеток;
  • передача нервных импульсов;
  • образование компонентов крови, гормонов и других важных веществ;
  • защита и фиксация некоторых внутренних органов;
  • клеточное деление, дыхание и др.
Таким образом, липиды являются жизненно важными химическими соединениями. Значительная часть этих веществ поступает в организм с пищей. После этого структурные компоненты липидов усваиваются организмом, и клетки вырабатывают новые молекулы липидов.

Биологическая роль липидов в живой клетке

Молекулы липидов выполняют огромное количество функций не только в масштабах всего организма, но и в каждой живой клетке в отдельности. По сути, клетка представляет собой структурную единицу живого организма. В ней происходит усвоение и синтез (образование ) определенных веществ. Часть из этих веществ идет на поддержание жизнедеятельности самой клетки, часть – на деление клетки, часть – на потребности других клеток и тканей.

В живом организме липиды выполняют следующие функции:

  • энергетическая;
  • резервная;
  • структурная;
  • транспортная;
  • ферментативная;
  • запасающая;
  • сигнальная;
  • регуляторная.

Энергетическая функция

Энергетическая функция липидов сводится к их распаду в организме, в процессе которого выделяется большое количество энергии. Живым клеткам эта энергия необходима для поддержания различных процессов (дыхание, рост, деление, синтез новых веществ ). Липиды поступают в клетку с притоком крови и откладываются внутри (в цитоплазме ) в виде небольших капель жира. При необходимости эти молекулы расщепляются, и клетка получает энергию.

Резервная (запасающая ) функция

Резервная функция тесно связана с энергетической. В форме жиров внутри клеток энергия может откладываться «про запас» и выделяться по мере необходимости. За накопление жиров ответственны особые клетки – адипоциты. Большая часть их объема занята крупной каплей жира. Именно из адипоцитов состоит жировая ткань в организме. Наибольшие запасы жировой ткани находятся в подкожно-жировой клетчатке, большом и малом сальнике (в брюшной полости ). При длительном голодании жировая ткань постепенно распадается, так как для получения энергии используются резервы липидов.

Также жировая ткань, отложенная в подкожно-жировой клетчатке, осуществляет теплоизоляцию. Ткани, богатые липидами, в целом хуже проводят тепло. Это позволяет организму поддерживать постоянную температуру тела и не так быстро охлаждаться или перегреваться в различных условиях внешней среды.

Структурная и барьерная функции (мембранные липиды )

Огромную роль играют липиды в строении живых клеток. В человеческом организме эти вещества образуют особый двойной слой, который формирует клеточную стенку. Благодаря этому живая клетка может выполнять свои функции и регулировать обмен веществ с внешней средой. Липиды, образующие клеточную мембрану, также позволяют сохранять форму клетки.

Почему липиды-мономеры образуют двойной слой (бислой )?

Мономерами называются химические вещества (в данном случае – молекулы ), которые способны, соединяясь, формировать более сложные соединения. Клеточная стенка состоит из двойного слоя (бислоя ) липидов. Каждая молекула, образующая эту стенку, имеет две части – гидрофобную (не контактирующую с водой ) и гидрофильную (контактирующую с водой ). Двойной слой получается из-за того, что молекулы липидов развернуты гидрофильными частями внутрь клетки и кнаружи. Гидрофобные же части практически соприкасаются, так как находятся между двумя слоями. В толще липидного бислоя могут располагаться и другие молекулы (белки, углеводы, сложные молекулярные структуры ), которые регулируют прохождение веществ через клеточную стенку.

Транспортная функция

Транспортная функция липидов имеет второстепенное значение в организме. Ее выполняют лишь некоторые соединения. Например, липопротеины, состоящие из липидов и белков, переносят в крови некоторые вещества от одного органа к другому. Однако эту функцию редко выделяют, не считая ее основной для данных веществ.

Ферментативная функция

В принципе, липиды не входят в состав ферментов, участвующих в расщеплении других веществ. Однако без липидов клетки органов не смогут синтезировать ферменты , конечный продукт жизнедеятельности. Кроме того, некоторые липиды играют значительную роль в усвоении поступающих с пищей жиров. В желчи содержится значительное количество фосфолипидов и холестерина . Они нейтрализуют избыток ферментов поджелудочной железы и не дают им повредить клетки кишечника . Также в желчи происходит растворение (эмульгирование ) экзогенных липидов, поступающих с пищей. Таким образом, липиды играют огромную роль в пищеварении и помогают в работе других ферментов, хотя сами по себе ферментами не являются.

Сигнальная функция

Часть сложных липидов выполняет в организме сигнальную функцию. Она заключается в поддержании различных процессов. Например, гликолипиды в нервных клетках принимают участие в передаче нервного импульса от одной нервной клетки к другой. Кроме того, большое значение имеют сигналы внутри самой клетки. Ей необходимо «распознавать» поступающие с кровью вещества, чтобы транспортировать их внутрь.

Регуляторная функция

Регуляторная функция липидов в организме является второстепенной. Сами липиды в крови мало влияют на течение различных процессов. Однако они входят в состав других веществ, имеющих огромное значение в регуляции этих процессов. Прежде всего, это стероидные гормоны (гормоны надпочечников и половые гормоны ). Они играют важную роль в обмене веществ, росте и развитии организма, репродуктивной функции, влияют на работу иммунной системы. Также липиды входят в состав простагландинов . Эти вещества вырабатываются при воспалительных процессах и влияют на некоторые процессы в нервной системе (например, восприятие боли ).

Таким образом, сами липиды не выполняют регуляторной функции, но их недостаток может отразиться на многих процессах в организме.

Биохимия липидов и их связь с другими веществами (белки, углеводы, АТФ, нуклеиновые кислоты, аминокислоты, стероиды )

Обмен липидов тесно связан с обменом других веществ в организме. В первую очередь, эта связь прослеживается в питании человека. Любая пища состоит из белков, углеводов и липидов, которые должны попадать в организм в определенных пропорциях. В этом случае человек будет получать и достаточно энергии, и достаточно структурных элементов. В противном случае (например, при недостатке липидов ) для выработки энергии будут расщепляться белки и углеводы.

Также липиды в той или иной степени связаны с обменом следующих веществ:

  • Аденозинтрифосфорная кислота (АТФ ). АТФ является своеобразной единицей энергии внутри клетки. При расщеплении липидов часть энергии идет на производство молекул АТФ, а эти молекулы принимают участие во всех внутриклеточных процессах (транспорт веществ, деление клетки, нейтрализация токсинов и др. ).
  • Нуклеиновые кислоты. Нуклеиновые кислоты являются структурными элементами ДНК и находятся в ядрах живых клеток. Энергия, вырабатываемая при расщеплении жиров, идет отчасти и на деление клеток. Во время деления происходит образование новых цепочек ДНК из нуклеиновых кислот.
  • Аминокислоты. Аминокислоты – это структурные компоненты белков. В соединении с липидами они образуют сложные комплексы, липопротеины, отвечающие за транспорт веществ в организме.
  • Стероиды. Стероиды – это вид гормонов, содержащих значительное количество липидов. При плохом усвоении липидов из пищи у пациента могут начаться проблемы с эндокринной системой.
Таким образом, обмен липидов в организме в любом случае нужно рассматривать в комплексе, с точки зрения взаимосвязи с другими веществами.

Переваривание и всасывание липидов (обмен веществ, метаболизм )

Переваривание и всасывание липидов является первым этапом обмена этих веществ. Основная часть липидов попадает в организм с пищей. В ротовой полости происходит измельчение пищи и ее смешивание со слюной. Далее комок попадает желудок , где химические связи частично разрушаются под действием соляной кислоты. Также некоторые химические связи в липидах разрушаются под действием фермента липазы , содержащейся в слюне.

Липиды нерастворимы в воде, поэтому в двенадцатиперстной кишке они не сразу подвергаются расщеплению ферментами. Сначала происходит так называемое эмульгирование жиров. После этого химические связи расщепляются под действием липазы, поступающей из поджелудочной железы. В принципе, для каждого вида липидов сейчас определен свой фермент, отвечающий за расщепление и усвоение данного вещества. Например, фосфолипаза расщепляет фосфолипиды, холестеролэстераза – соединения холестерола и т. д. Все эти ферменты в том или ином количестве содержатся в соке поджелудочной железы.

Расщепленные фрагменты липидов всасываются по отдельности клетками тонкого кишечника. В целом переваривание жиров представляет собой весьма сложный процесс, который регулируется множеством гормонов и гормоноподобных веществ.

Что такое эмульгирование липидов?

Эмульгирование представляет собой неполное растворение жировых веществ в воде. В пищевом комке, попадающем в двенадцатиперстную кишку, жиры содержатся в виде крупных капель. Это препятствует их взаимодействию с ферментами. В процессе эмульгирования крупные жировые капли «дробятся» на капельки поменьше. В результате площадь соприкосновения жировых капель и окружающих водорастворимых веществ увеличивается, и становится возможным расщепление липидов.

Процесс эмульгирования липидов в пищеварительной системе проходит в несколько этапов:

  • На первом этапе печень вырабатывает желчь, которая и будет осуществлять эмульгирование жиров. Она содержит соли холестерина и фосфолипидов, которые взаимодействуют с липидами и способствуют их «дроблению» на мелкие капли.
  • Желчь, выделяемая из печени , скапливается в желчном пузыре. Здесь она концентрируется и выделяется по мере необходимости.
  • При потреблении жирной пищи, к гладким мышцам желчного пузыря поступает сигнал для сокращения. В результате порция желчи по желчевыводящим протокам выделяется в двенадцатиперстную кишку.
  • В двенадцатиперстной кишке происходит собственно эмульгирование жиров и их взаимодействие с ферментами поджелудочной железы. Сокращения стенок тонкого кишечника способствуют этому процессу, «перемешивая» содержимое.
У некоторых людей после удаления желчного пузыря могут возникнуть проблемы с усвоением жиров. Желчь поступает в двенадцатиперстную кишку непрерывно, непосредственно из печени, и ее не хватает для эмульгирования всего объема липидов, если их съедено слишком много.

Ферменты для расщепления липидов

Для переваривания каждого вещества в организме присутствуют свои ферменты. Их задача состоит в разрушении химических связей между молекулами (или между атомами в молекулах ), чтобы полезные вещества могли нормально усваиваться организмом. За расщепления различных липидов отвечают разные ферменты. Большинство из них содержится в соке, выделяемом поджелудочной железой.

За расщепление липидов отвечают следующие группы ферментов:

  • липазы;
  • фосфолипазы;
  • холестеролэстераза и др.

Какие витамины и гормоны участвуют в регуляции уровня липидов?

Уровень большинства липидов в крови человека относительно постоянен. Он может колебаться в определенных пределах. Зависит это от биологических процессов, протекающих в самом организме, и от ряда внешних факторов. Регуляция уровня липидов в крови является сложным биологическим процессом, в котором принимает участие множество различных органов и веществ.

Наибольшую роль в усвоении и поддержании постоянного уровня липидов играют следующие вещества:

  • Ферменты. Ряд ферментов поджелудочной железы принимает участие в расщеплении липидов, поступающих в организм с пищей. При недостатке этих ферментов уровень липидов в крови может понизиться, так как эти вещества просто не будут усваиваться в кишечнике.
  • Желчные кислоты и их соли. В желчи содержатся желчные кислоты и ряд их соединений, которые способствуют эмульгированию липидов. Без этих веществ также невозможно нормальное усвоение липидов.
  • Витамины. Витамины оказывают комплексное укрепляющее действие на организм и прямо или косвенно влияют также на обмен липидов. Например, при недостатке витамина А ухудшается регенерация клеток в слизистых оболочках, и переваривание веществ в кишечнике тоже замедляется.
  • Внутриклеточные ферменты. В клетках эпителия кишечника содержатся ферменты, которые после всасывания жирных кислот преобразуют их в транспортные формы и направляют в кровоток.
  • Гормоны. Ряд гормонов влияет на обмен веществ в целом. Например, высокий уровень инсулина может сильно влиять на уровень липидов в крови. Именно поэтому для пациентов с сахарным диабетом некоторые нормы пересмотрены. Гормоны щитовидной железы , глюкокортикоидные гормоны или норадреналин могут стимулировать распад жировой ткани с выделением энергии.
Таким образом, поддержание нормального уровня липидов в крови – весьма сложный процесс, на который прямо или косвенно влияют разные гормоны, витамины и другие вещества. В процессе диагностики врачу необходимо определить, на каком именно этапе этот процесс был нарушен.

Биосинтез (образование ) и гидролиз (распад ) липидов в организме (анаболизм и катаболизм )

Метаболизмом называется совокупность обменных процессов в организме. Все метаболические процессы можно разделить на катаболические и анаболические. К катаболическим процессам относится расщепление и распад веществ. В отношении липидов это характеризуется их гидролизом (распадом на более простые вещества ) в желудочно-кишечном тракте. Анаболизм объединяет биохимические реакции, направленные на образование новых, более сложных веществ.

Биосинтез липидов происходит в следующих тканях и клетках:

  • Клетки эпителия кишечника. В стенке кишечника происходит всасывание жирных кислот, холестерина и других липидов. Сразу после этого в этих же клетках образуются новые, транспортные формы липидов, которые попадают в венозную кровь и направляются в печень.
  • Клетки печени. В клетках печени часть транспортных форм липидов распадется, и из них синтезируются новые вещества. Например, здесь происходит образование соединений холестерина и фосфолипидов, которые затем выделяются с желчью и способствуют нормальному пищеварению.
  • Клетки других органов. Часть липидов попадает с кровью в другие органы и ткани. В зависимости от типа клеток, липиды преобразуются в определенный вид соединений. Все клетки, так или иначе, синтезируют липиды для образования клеточной стенки (липидного бислоя ). В надпочечниках и половых железах из части липидов синтезируются стероидные гормоны.
Совокупность вышеописанных процессов и составляет метаболизм липидов в человеческом организме.

Ресинтез липидов в печени и других органах

Ресинтезом называется процесс образования определенных веществ из более простых, которые были усвоены раньше. В организме этот процесс протекает во внутренней среде некоторых клеток. Ресинтез необходим, для того чтобы ткани и органы получали все необходимые виды липидов, а не только те, которые были употреблены с пищей. Ресинтезированные липиды называются эндогенными. На их образование организм затрачивает энергию.

На первом этапе ресинтез липидов происходит в стенках кишечника. Здесь поступающие с пищей жирные кислоты преобразуются в транспортные формы, которые отправятся с кровью в печень и другие органы. Часть ресинтезированных липидов будет доставлено в ткани, из другой части образуются необходимые для жизнедеятельности вещества (липопротеины, желчь, гормоны и др. ), избыток преобразуется в жировую ткань и откладывается «про запас».

Входят ли липиды в состав мозга?

Липиды являются очень важной составляющей частью нервных клеток не только в головном мозге , но и во всей нервной системе. Как известно, нервные клетки контролируют различные процессы в организме путем передачи нервных импульсов. При этом все нервные пути «изолированы» друг от друга, чтобы импульс приходил к определенным клеткам и не затрагивал другие нервные пути. Такая «изоляция» возможна благодаря миелиновой оболочке нервных клеток. Миелин, препятствующий хаотичному распространению импульсов, примерно на 75% состоит из липидов. Как и в клеточных мембранах, здесь они образуют двойной слой (бислой ), который несколько раз завернут вокруг нервной клетки.

В состав миелиновой оболочки в нервной системе входят следующие липиды:

  • фосфолипиды;
  • холестерин;
  • галактолипиды;
  • гликолипиды.
При некоторых врожденных нарушениях образования липидов возможны неврологические проблемы. Это объясняется именно истончением или прерыванием миелиновой оболочки.

Липидные гормоны

Липиды играют важную структурную роль, в том числе, присутствуя в структуре многих гормонов. Гормоны, в состав которых входят жирные кислоты, называют стероидными. В организме они вырабатываются половыми железами и надпочечниками. Некоторые из них присутствуют и в клетках жировой ткани. Стероидные гормоны принимают участие в регуляции множества жизненно важных процессов. Их дисбаланс может повлиять на массу тела, способность к зачатию ребенка , развитие любых воспалительных процессов, работу иммунной системы. Залогом нормальной выработки стероидных гормонов является сбалансированное потребление липидов.

Липиды входят в состав следующих жизненно важных гормонов:

  • кортикостероиды (кортизол , альдостерон , гидрокортизон и др. );
  • мужские половые гормоны - андрогены (андростендион, дигидротестостерон и др. );
  • женские половые гормоны - эстрогены (эстриол, эстрадиол и др. ).
Таким образом, недостаток некоторых жирных кислот в пище может серьезно отразиться на работе эндокринной системы.

Роль липидов для кожи и волос

Большое значение имеют липиды для здоровья кожи и ее придатков (волосы и ногти ). В коже содержатся так называемые сальные железы, которые выделяют на поверхность некоторое количество секрета, богатого жирами. Это вещество выполняет множество полезных функций.

Для волос и кожи липиды важны по следующим причинам:

  • значительная часть вещества волоса состоит из сложных липидов;
  • клетки кожи быстро меняются, и липиды важны как энергетический ресурс;
  • секрет (выделяемое вещество ) сальных желез увлажняет кожу;
  • благодаря жирам поддерживается упругость, эластичность и гладкость кожи;
  • небольшое количество липидов на поверхности волос придают им здоровый блеск;
  • липидный слой на поверхности кожи защищает ее от агрессивного воздействия внешних факторов (холод, солнечные лучи, микробы на поверхности кожи и др. ).
В клетки кожи, как и в волосяные луковицы, липиды поступают с кровью. Таким образом, нормальное питание обеспечивает здоровье кожи и волос. Использование шампуней и кремов, содержащих липиды (особенно незаменимые жирные кислоты ) также важно, потому что часть этих веществ будет впитываться с поверхности клеток.

Классификация липидов

В биологии и химии существует довольно много различных классификаций липидов. Основной является химическая классификация, согласно которой липиды делятся в зависимости от своей структуры. С этой точки зрения все липиды можно разделить на простые (состоящие только из атомов кислорода, водорода и углерода ) и сложные (включающие хотя бы один атом других элементов ). Каждая из этих групп имеет соответствующие подгруппы. Эта классификация наиболее удобна, так как отражает не только химическое строение веществ, но и частично определяет химические свойства.

В биологии и медицине имеются свои дополнительные классификации, использующие другие критерии.

Экзогенные и эндогенные липиды

Все липиды в организме человека можно разделить на две большие группы - экзогенные и эндогенные. В первую группу входят все вещества, попадающие в организм из внешней среды. Наибольшее количество экзогенных липидов попадает в организм с пищей, однако существуют и другие пути. Например, при применении различных косметических средств или лекарственных препаратов организм также может получать некоторое количество липидов. Их действие будет преимущественно локальным.

После попадания в организм все экзогенные липиды расщепляются и усваиваются живыми клетками. Здесь из их структурных компонентов будут сформированы другие липидные соединения, в которых нуждается организм. Эти липиды, синтезированные собственными клетками, называются эндогенными. Они могут иметь совершенно другую структуру и функции, но состоят из тех же «структурных компонентов», которые попали в организм с экзогенными липидами. Именно поэтому при недостатке в пище тех или иных видов жиров могут развиваться различные заболевания. Часть компонентов сложных липидов не может быть синтезирована организмом самостоятельно, что отражается на течении определенных биологических процессов.

Жирные кислоты

Жирными кислотами называется класс органических соединений, которые являются структурной часть липидов. В зависимости от того, какие именно жирные кислоты входят в состав липида, могут меняться свойства этого вещества. Например, триглицериды, важнейший источник энергии для человеческого организма, являются производными спирта глицерина и нескольких жирных кислот.

В природе жирные кислоты содержатся в самых разных веществах - от нефти до растительных масел. В организм человека они попадают в основном с пищей. Каждая кислота является структурным компонентом для определенных клеток, ферментов или соединений. После всасывания организм преобразует ее и использует в различных биологических процессах.

Наиболее важными источниками жирных кислот для человека являются:

  • животные жиры;
  • растительные жиры;
  • тропические масла (цитрусовое, пальмовое и др. );
  • жиры для пищевой промышленности (маргарин и др. ).
В организме человека жирные кислоты могут откладываться в жировой ткани в составе триглицеридов либо циркулировать в крови. В крови они содержатся как в свободном виде, так и в виде соединений (различные фракции липопротеинов ).

Насыщенные и ненасыщенные жирные кислоты

Все жирные кислоты по своей химической структуре делятся на насыщенные и ненасыщенные. Насыщенные кислоты менее полезны для организма, а некоторые из них даже вредны. Это объясняется тем, что в молекуле этих веществ нет двойных связей. Это химически стабильные соединения, и они хуже усваиваются организмом. В настоящее время доказана связь некоторых насыщенных жирных кислот с развитием атеросклероза .

Ненасыщенные жирные кислоты делятся на две большие группы:

  • Мононенасыщенные. Данные кислоты имеют в своей структуре одну двойную связь и являются, таким образом, более активными. Считается, что их употребление в пищу может понижать уровень холестерина и препятствовать развитию атеросклероза. Наибольшее количество мононенасыщенных жирных кислот содержится в ряде растений (авокадо , оливки, фисташки, лесные орехи ) и, соответственно, в маслах, получаемых из этих растений.
  • Полиненасыщенные. Полиненасыщенные жирные кислоты имеют в своей структуре несколько двойных связей. Отличительной особенностью этих веществ является то, что человеческий организм не способен их синтезировать. Другими словами, если в организм не будут поступать с пищей полиненасыщенные жирные кислоты, со временем это неизбежно приведет к определенным нарушениям. Лучшими источниками этих кислот являются морепродукты, соевое и льняное масло, семена кунжута , мака , пророщенная пшеница и др.

Фосфолипиды

Фосфолипиды являются сложными липидами, содержащими в своем составе остаток фосфорной кислоты. Эти вещества наряду с холестерином являются основным компонентом клеточных мембран. Также эти вещества принимают участие в транспорте других липидов в организме. С медицинской точки зрения фосфолипиды могут выполнять и сигнальную роль. Например, они входят в состав желчи, так как способствуют эмульгированию (растворению ) других жиров. В зависимости от того, какого вещества в желчи больше, холестерина или фосфолипидов, можно определить риск развития желчекаменной болезни .

Глицерин и триглицериды

По химической структуре глицерин не является липидом, однако он является важным структурным компонентом триглицеридов. Это группа липидов, играющих огромную роль в организме человека. Наиболее важной функцией этих веществ является поставка энергии. Триглицериды, попадающие в организм с пищей, расщепляются на глицерин и жирные кислоты. В результате выделяется очень большое количество энергии, которая идет на работу мышц (скелетных мышц, мышцы сердца и др. ).

Жировая ткань в организме человека представлена в основном триглицеридами. Большая часть этих веществ, перед тем как отложиться в жировой ткани, претерпевает некоторые химические трансформации в печени.

Бета-липиды

Бета-липидами иногда называют бета-липопротеиды. Двойственность названия объясняется различиями в классификациях. Это одна из фракций липопротеинов в организме, которая играет важную роль в развитии некоторых патологий. Прежде всего, речь идет об атеросклерозе. Бета-липопротеиды транспортируют холестерол от одних клеток к другим, но в силу особенностей строения молекул, этот холестерол часто «застревает» в стенках сосудов, образуя атеросклеротические бляшки и препятствуя нормальному току крови. Перед применением необходимо проконсультироваться со специалистом.

Жиры входят в состав всех клеток организма и участвуют в ряде обменных процессов, являются «запасными» клетками организма, выполняющими функции по аккумуляции химической энергии и использованию ее при недостатке пищи.

Липиды состоят из жирных кислот, которые делятся на насыщенные и ненасыщенные.

Насыщенные жирные кислоты

Насыщенные - содержатся преимущественно в животных жирах, а также могут частично синтезироваться из углеводов и даже из белков. Именно избыток насыщенных жирных кислот в питании человека приводит к нарушению обменных жировых процессов, повышению уровня холестерина в крови.

Растительные жиры содержат в основном ненасыщенные кислоты. В некоторых растительных продуктах их содержится достаточно много, например, в орехах - 65 %, в овсяной крупе - 7 %, в гречневой крупе - 3 %.

Ненасыщенные жирные кислоты

Ненасыщенные жирные кислоты, особенно такие, как линолевая, линолиновая и арахидоновая, играют важную роль в обменных процессах организма человека. Они не могут синтезироваться и потому являются незаменимыми и должны поступать в организм извне. Ненасыщенные жирные кислоты входят в состав клеточных мембран и других структурных элементов тканей и участвуют в обменных реакциях, обеспечивая процессы роста, нормальные структурные функции, нормальное строение капилляров, их проницаемость, что особенно важно в протекании тканевых процессов. Ненасыщенные жирные кислоты способствуют удалению холестерина из организма, тем самым препятствуя развитию атеросклероза. Потребность организма в полиненасыщенных жирных кислотах составляет 20–25 г в сутки, и за счет этих кислот необходимо обеспечивать до 5 % общей калорийности рациона питания человека.

Фосфолипиды - лецитин, холин, кефалины, также участвуют в регуляции холестеринового обмена, препятствуют накоплению холестерина, то есть обладают липотропным действием. Больше всего фосфолипидов в зерне, бобовых, нерафинированных растительных маслах, картофеле.

27) Углеводы

Важнейшими энергетическими компонентами пищи являются углеводы, наиболее быстро и оперативно обеспечивающие текущие потребности организма в энергии.

Различают простые сахара и полисахариды:

    Простые сахара - это моносахариды (глюкоза, фруктоза, ксилоза, арабиноза), дисахариды (сахароза, лактоза, мальтоза), трисахариды (рафиноза, малецитоза, генцианоза, рамниноза, вербаскоза), тетрасахариды (стахиоза, лупеоза).

    Полисахариды - это крахмал, гликоген, инулин, гемицеллюлоза, целлюлоза, пектиновые вещества, камеди, декстраны и декстрины.

По усваиваемости различают усваивамые в пищеварительном тракте человека углеводы и неусваивамые. Длительное время неусваивамые углеводы считали балластными веществами, но современные исследования доказали их важную роль в обменном процессе.

    К усваиваемым углеводам относят глюкозу, фруктозу, сахарозу, галактозу, лактозу, мальтозу, рафннозу, инулин, крахмал, а также декстрины, как промежуточный продукт распада крахмала.

    Неусваиваимыми считаются целлюлоза, гемицеллюлоза, пектиновые вещества, камеди, декстраны, лигнин, фитиновая кислота. Большинство неусваиваимых углеводов являются основой клеточных стенок растений.

Утилизация углеводов человеческим организмом зависит также от наличия ферментов в пищеварительных соках, а также от некоторых гормональных веществ, например, инсулина, гормонов щитовидной железы, коры надпочечников и других.

В растениях широко распространены питательные сахара - глюкоза, фруктоза, галактоза и манноза.

В ряде растений содержится инулин, представляющий собой цепочку фруктозы, рекомендуемый в качестве полисахарида в питании больных сахарным диабетом. Галактоза в растениях встречается р виде гликозидов. В сахарной свекле и тростнике содержится сахароза, откуда ее получают промышленным способом. Мальтоза встречается в овсе, ячмене, ржи, сое. Лактоза в растениях не встречается, она поступает в организм человека с животными продуктами, в частности с молоком.

Наиболее распространенный в растениях полисахарид - это крахмал, важный компонент повседневной пищи. Он содержится во многих растительных продуктах - хлебе, мучных изделиях, картофеле, крупяных и фруктовых блюдах.

Нормальное продвижение пищи по пищеварительному тракту, выведение из организма холестерина, связывание некоторых микроэлементов, снижение аппетита, создание чувства насыщения - вот далеко не все эффекты, определяемые присутствием неусвояемых углеводов.

Пектины в растительных продуктах также играют важную биологическую роль естественных адсорбентов токсических гнилостных веществ, солей тяжелых металлов, снижают уровень холестерина, выводят желчные кислоты. Наиболее богаты пектином свекла и черная смородина - 1,1 %, яблоки - 1 % и сливы - 0,9 %.

28) Характерной особенностью растительной клетки является наличие жесткой (твердой) клеточной стенки. Клеточная оболочка определяет форму клетки, придает клеткам и тканям растений механическую прочность и опору, защищает цитоплазматическую мембрану от разрушения под влиянием гидростатического давления, развиваемого внутри клетки. Однако такую оболочку нельзя рассматривать только как механический каркас. Клеточная оболочка обладает такими свойствами, которые позволяют противостоять давлению воды внутри клетки, и в то же время обладает растяжимостью и способностью к росту. Она является противоинфекционным барьером, принимает участие в поглощении минеральных веществ, являясь своеобразным ионообменником. Появились данные, что углеводные компоненты клеточной оболочки, взаимодействуя с гор­монами, вызывают ряд физиологических изменений. Для молодых растущих клеток характерна первичная клеточная оболочка. По мере их старения образуется вторичная структура. Первичная клеточная оболочка, как правило, малоспециализирована, имеет более простое строение и меньшую толщину, чем вторичная. В состав клеточной оболочки входят целлюлоза, гемицеллюлозы, пектиновые вещества, липиды и небольшое количество белка. Компоненты клеточной оболочки являются продуктами жизнедеятельности клетки. Они выделяются из цитоплазмы и претерпевают превращения на поверхности плазмалеммы. Первичные клеточные стенки содержат из расчета на сухое вещество: 25% целлюлозы, 25% гемицеллюлозы, 35% пектиновых веществ и 1-8% структурных белков. Однако цифры весьма колеблются. Так, в состав клеточных стенок колеоптилей злаков входит до 60-70% гемицеллюлоз, 20-25 % целлюлозы, 10% пектиновых веществ. Вместе с тем клеточные стенки эндосперма содержат до 85% гемицеллюлоз. Во вторичных клеточных стенках больше целлюлозы. Остов клеточной оболочки составляют переплетенные микро- и макрофибриллы целлюлозы. Целлюлоза, или клетчатка (С6Н10О5)n, представляет собой длинные неразветвленные цепочки, состоящие из 3-10 тыс. остатков D-глюкозы, соединенных b -1,4-гликозидными связями. Молекулы целлюлозы объединены в мицеллу, мицеллы объединены в микрофибриллу, микрофибриллы объединены в макрофибриллу. Макрофибриллы, мицеллы и микрофибриллы соединены в пучки водородными связями. Диаметр мицеллы составляет 5 нм, диаметр микрофибриллы - 25-30 нм, макрофибриллы - 0,5 мкм. Структура микро- и макрофибрилл неоднородна. Наряду с хорошо организованными кристаллическими участками имеются паракристаллические, аморфные.

Микро- и макрофибриллы целлюлозы в клеточной оболочке погружены в аморфную желеобразную массу - матрикс. Матрикс состоит из гемицеллюлоз, пектиновых веществ и белка. Гемицеллюлозы, или полуклетчатки,- это производные пентоз и гексоз. Степень полимеризации у этих соединений меньше по сравнению с клетчаткой (150-300 мономеров, соединенные b -1,3- и b -1,4-гли-козидными связями). Из гемицеллюлоз наибольшее значение имеют ксило-глюканы, которые входят в состав матрикса первичной клеточной стенки. Это цепочки остатков D-глюкозы, соединенных b -1,4-гликозидными связями, у которых от шестого углеродного атома глюкозы отходят боковые цепи, главным образом из остатков D-ксилозы. К ксилозе могут присоединяться остатки галактозы и фукозы. Гемицеллюлозы способны связываться с целлюлозой, поэтому они формируют вокруг микрофибрилл целлюлозы оболочку, скрепляя их в сложную цепь.

Клеточная оболочка способна к утолщению и видоизменению. В результате этого образуется ее вторичная структура. Утолщение оболочки происходит путем наложения новых слоев на первичную оболочку. Ввиду того, что наложение идет уже на твердую оболочку, фибриллы целлюлозы в каждом слое лежат параллельно, а в соседних слоях - под углом друг к другу. Предполагается, что за ориентацию микрофибрилл целлюлозы ответственны микротрубочки. Этим достигается значительная прочность (и твердость) вторичной оболочки. По мере того как число слоев фибрилл целлюлозы становится больше, и толщина стенки увеличивается, она теряет эластичность и способность к росту. Во вторичной клеточной стенке содержание целлюлозы значительно возрастает (в некоторых случаях до 60% и более). По мере дальнейшего старения клеток матрикс оболочки может заполняться различными веществами - лигнином, суберином. Лиг­нин - это полимер, образующийся путем конденсации ароматических спиртов. Включение лигнина сопровождается одревеснением, увеличением прочности и уменьшением растяжимости. Мономерами суберина являются насыщенные и ненасыщенные оксожирные кислоты. Пропитанные суберином клеточные стенки (опробковение оболочки) становятся труднопроницаемыми для воды и растворов. На поверхности клеточной стенки могут откладываться кутин и воск. Кутин состоит из оксожирных кислот и их солей, выделяется через клеточную стенку на поверхность эпидермальной клетки и участвует в образовании кутикулы. В состав кутикулы могут входить воска, которые также секретирует цитоплазма. Кутикула препятствует испарению воды, регулирует водно-тепловой режим тканей растений.

Исследования позволили дать предположительную модель взаимосвязи и взаиморасположения всех перечисленных веществ в клеточной стенке. Согласно этой модели в первичной клеточной оболочке микрофибриллы целлюлозы располагаются либо беспорядочно, либо перпендикулярно (в основном) продольной оси клетки. Между микрофибриллами целлюлозы находятся молекулы гемицеллюлозы, которые, в свою очередь, связаны через пектиновые вещества с белком. При этом последовательность веществ следующая: целлюлоза - гемицеллюлозы - пектиновые вещества - белок - пектиновые вещества - гемицеллюлозы - целлюлоза. Микрофибриллы целлюлозы и вещества матрикса оболочки связаны между собой. Единственными нековалентными связями являются водородные между целлюлозными микрофибриллами и гемицеллюлозой (по преимуществу ксилоглюканом). Между ксилоглюканом и пектиновыми веществами, так же как и между пектиновыми веществами и белком экстенсином, возникают ковалентные связи.

29) В основе роста многоклеточных организмов лежит увеличение числа и размеров клеток, сопр6овождаемое их дифференциацией, т.е. возникновением и накоплением различий между клетками, образовавшимися в результате деления. Еще со времени Ю. Сакса рост клеток принято делить на три фазы: эмбриональную, растяжения, дифференцировки. Такое разделение носит условный характер. За последнее время внесены изменения в само понимание основных особенностей, характеризующих эти фазы роста. Если прежде считалось, что процесс деления клетки происходит лишь в эмбриональную фазу роста, то сейчас показано, что клетки могут иногда делиться и в фазу растяжения. Важно, что дифференцировка отнюдь не является особенностью только третьей, последней фазы роста. Дифференцировка клеток, в смысле появления и накопления внутренних физиологических различий между ними, проходит на протяжении всех трех фаз и является важной особенностью роста клеток. В третьей фазе эти внутренние физиологические различия лишь получают внешнее морфологическое выражение. Все же ряд существенных отличий между фазами роста имеется, и физиологи продолжают рассматривать их отдельно. Эмбриональная фаза. Клетка возникает в результате деления другой эмбриональной клетки. Затем она несколько увеличивается, главным образом за счет увеличения веществ цитоплазмы, достигает размеров материнской клетки и снова делится. Таким образом, эмбриональная фаза делится на два периода: период между делениями - интерфаза продолжительностью 15-20 ч и собственно деление клетки - 2-3 ч. Время это колеблется в зависимости от вида растений и условий (температуры).

На этой фазе процесс дифференцировки уже прояв¬ляется в определенных структурных признаках, т. е. меняется форма, внутрен¬няя и внешняя структура клетки. Процесс функциональной дифференциации клеток, или накопление физиологических различий между ними, происходит на всех фазах роста. Определенные различия имеются уже между появившимися в период деления дочерними клетками, из которых в дальнейшем будут образо¬вываться различные ткани. Это проявляется в их химическом составе, морфо¬логических особенностях. Значительно варьируют число и структура митохонд¬рий, и особенно пластид, обилие и локализация эндоплазматической сети. Очень видоизменяются клетки проводящей системы. При дифференциации члеников ситовидных трубок большинство органелл разрушается. В сосудах ксилемы почти полностью исчезает цитоплазма. Происходит образование вторичной клеточной оболочки. Этот процесс сопровождается наложением новых слоев микрофиб¬рилл целлюлозы на старые. При этом ориентация фибрилл целлюлозы в каж¬дом новом слое другая. Клеточная оболочка утолщается и теряет способность к росту.

В стенках соседних клеток, как правило, одна против другой, образуются поры. Порами называют отверстия во вторичной оболочке, где клетки разделяют лишь первичная оболочка и срединная пластинка. Участки первичной оболочки и срединную пластинку, разделяющие соседствующие поры смежных клеток, называют поровой мембраной или замыкающей пленкой поры. Замыкающую пленку поры пронизывают плазмодесменные канальцы, но сквозного отверстия в порах обычно не образуется.

Каждая пора имеет поровую камеру. В тех случаях, когда откладывается мощная вторичная оболочка, камеры превращаются в узкиепоровые каналы. В клетках паренхимных и механических тканей вторичная оболочка обычно резко прерывается у краев камеры или порового канала, диаметр которых благодаря этому почти не изменяется по всей толще вторичной оболочки. Поры такого типа называются простыми, а комбинация двух простых пор - простой парой пор.

В водопроводящих элементах - сосудах и трахеидах - вторичная оболочка нередко нависает над камерой в виде свода, образуя окаймление. Такие поры получили название окаймленных или окаймленной пары пор. Поровая камера, ограниченная окаймлением, открывается в полость клетки через отверстие в окаймлении - апертуру поры. Поры облегчают транспорт воды и растворенных веществ от клетки к клетке.

ПЕРФОРА́ЦИЯ - Сквозные отверстия в оболочках клеток проводящих элементов у сосудистых растений.

30) Зеленая, желтая и коричневая окраска зерен ржи обусловлены соответствующим сочетанием синезеленой, коричневой и соломенножелтой окраски алейронового слоя, семенной и плодовой оболочек. Пигментация указанных составных частей является весьма важным природным фактором цветовой характеристики зерна ржи. В соответствии со сделанным предположением о характере содержащихся в зерне пигментов предварительно была произведена качественная проба на содержание хлорофилла, каротиноидов и антоцианинов. В качестве подопытного материала была взята рожь сорта Вятка московская урожая 1947 г. Определения проводились нами в четырехкратной повторности в сходе с сита 2,0х20 мм при наличии верхнего сита с отверстиями 2,2х20 мм. Выровненное зерно разбивали на цветовые фракции и разделяли на составные части. Хлорофилл определяли на основе получения спиртовых вытяжек. Для установления наличия каротиноидов готовили хлороформенный экстракт, который при добавлении насыщенного раствора треххлористой сурьмы в хлороформе в присутствии каротиноидов давал синюю окраску. Наличие антоцианинов устанавливалось методом А.Л. Кирсанова. В их присутствии полученный на холоде экстракт при добавлении закисной соли сернокислого железа и сегнетовой соли дает интенсивную фиолетовую окраску. Для определения хлорофилла был использован метод, применяемый в лаборатории фотосинтеза Института физиологии растений Академии наук СССР. Навеску измельченного материала с добавлением СаСО3 несколько раз экстрагируют при растирании со спиртом ректификатом до получения бесцветных вытяжек. Соединенные спиртовые вытяжки сгущают под вакуумом и направляют на измерение коэффициента поглощения в спектрофотометр Бекмана при длине волны 665 мμ. Расчет производят, исходя из того, что 1%-ный раствор хлорофилла в слое 1 см дает коэффициент поглощения при данной длине волны E1 = 40 000. Содержание каротиноидов определяли методом Государственной контрольной витаминной станции Министерства здравоохранения СССР. Сущность его сводится к растиранию навески с этиловым спиртом, затем с бензином, омылению полученной вытяжки с 5%-ным раствором щелочи, отмывке спирта и щелочи водой, сушке бензиновой фракции с безводным сернокислым натрием, пропусканию через адсорбционную колонку и колориметрированию конечного раствора по сравнению со стандартным раствором. Антоцианины определяли по методу, принятому во Всесоюзном витаминном институте. Сущность его заключается в том, что навеску заливают 0,2% NaOH, кипятят и после образования желтокрасной окраски колориметрируют по сравнению со стандартным раствором 0,05 нормального йода. Из пигментов пластид были обнаружены хлорофилл и каротиноиды, из пигментов клеточного сока - антоцианины. Опытами установлено, что хлорофилл включен главным образом в алейроновый слой как зеленых зерен, которые дали наиболее интенсивное окрашивание, так и зерен другой окраски.

Вспомните!

В чём особенность строения атома углерода?

Органические молекулы состоят из углерода. Благодаря небольшой величине атома и четырем валентным электронам он способен образовывать прочные ковалентные связи углеродных скелетов и других атомов. Эта дает возможность углеродным соединениям образовывать большие и сложные молекулы. Это и отличает их от неорганических веществ. Среди органических веществ различают небольшие по молекулярной массе молекулы и макромолекулы. Малые молекулы представляют собой соединения углерода с молекулярной массой от 100 до 100 и содержат до 30 углеродных атомов. Из таких молекул образуются более крупные макромолекулы, их молекулярные массы могут превышать 1000000.

Какую связь называют ковалентной?

Ковалентная связь (от лат. co - «совместно» и vales - «имеющий силу») - химическая связь, образованная перекрытием (обобществлением) пары валентных электронных облаков. Обеспечивающие связь электронные облака (электроны) называются общей электронной парой.

Какие вещества называют органическими?

Класс химических соединений, в состав которых входит углерод как основной элемент, а также кислород, азот, водород и другие. Органические вещества входят в состав живых организмов.

Какие продукты питания содержат большое количество жира?

Насыщенные жиры остаются твердыми при комнатной температуре. Их в большом количестве содержат:

– маргарин;

– жирное мясо, особенно жареное;

– фаст-фуд;

– молочные продукты;

– шоколад;

– кокосовое и пальмовое масла;

– яйцо (желток).

Наиболее богаты ненасыщенными жирами:

– птица (кроме кожи);

– жирные сорта рыбы;

– орехи: кешью, арахис (мононенасыщенные), грецкие, миндаль (полиненасыщенные);

– растительные масла (подсолнечное, льняное, рапсовое, кукурузное (мононенасыщенные), оливковое, арахисовое (полиненасыщенные)), а также продукты, из которых их получают (арахис, оливки, подсолнечные семечки и прочее).

Вопросы для повторения и задания

1. Какие органические вещества входят в состав клетки?

Органические вещества - это сложные углеродсодержащие соединения. Органические вещества живой природы чрезвычайно разнообразны по своим размерам, строению и функциям. Поэтому создать единую классификацию, которая учитывала бы все характерные особенности каждого соединения, практически невозможно. Наиболее распространено деление всех органических соединений на низкомолекулярные (аминокислоты, липиды, органические кислоты и др.) и высокомолекулярные, или биополимеры. Полимеры - это молекулы, состоящие из повторяющихся структурных единиц - мономеров. В свою очередь, все биополимеры подразделяют на две группы: гомополимеры, построенные из мономеров одного типа (например, гликоген, крахмал и целлюлоза состоят из молекул глюкозы), и гетерополимеры, в состав которых входят отличающиеся друг от друга мономеры (например, белки состоят из 20 типов аминокислот, а нуклеиновые кислоты - из 8 типов нуклеотидов: ДНК - из 4 типов, РНК - из 4 типов.

2. Что такое липиды? Опишите их химический состав.

Среди низкомолекулярных органических соединений, входящих в состав живых организмов, важную роль играют липиды, к которым относят жиры, воски и разнообразные жироподобные вещества. Это гидрофобные соединения, нерастворимые в воде. Обычно общее содержание липидов в клетке колеблется в пределах 5-15% от массы сухого вещества. Широко распространены в природе нейтральные жиры, которые представляют собой соединения высокомолекулярных жирных кислот и трёхатомного спирта глицерина (рис. 14). В цитоплазме клеток нейтральные жиры откладываются в виде жировых капель.

3. Какова роль липидов в обеспечении жизнедеятельности организма?

Жиры являются источником энергии. При окислении 1 г жира до углекислого газа и воды выделяется 38,9 кДж энергии (при окислении 1 г глюкозы - всего 17 кДж). Жиры служат источником метаболической воды, из 1 г жира образуется 1,1 г воды. Используя свои жировые запасы, верблюды или впадающие в зимнюю спячку суслики могут обходиться без воды длительное время. Жиры в основном откладываются в клетках жировой ткани. Эта ткань служит энергетическим депо организма, предохраняет его от потери тепла и выполняет защитную функцию. В полости тела между внутренними органами у позвоночных животных формируются упругие жировые прокладки, которые защищают органы от повреждений, а подкожная жировая клетчатка создаёт теплоизоляционный слой.

4. В чём заключается биологическое значение жироподобных веществ?

Не менее важное значение в организме имеют жироподобные вещества. Представители этой группы - фосфолипиды - формируют основу всех биологических мембран. По своей структуре фосфолипиды сходны с жирами, но в их молекуле один или два остатка жирных кислот замещены остатком фосфорной кислоты. Важную роль в жизнедеятельности всех живых организмов, особенно животных, играет жироподобное вещество - холестерин. В корковом слое надпочечников, в половых железах и в плаценте из него образуются стероидные гормоны (кортикостероиды и половые гормоны). В клетках печени из холестерина синтезируются желчные кислоты, необходимые для нормального переваривания жиров. К жироподобным веществам относят также жирорастворимые витамины А, D, E, K, обладающие высокой биологической активностью.

Подумайте! Вспомните!

1. Какие вы знаете биологически активные вещества в организме человека, относящиеся к группе липидов? Каковы их функции?

Стероидные гормоны (steroid hormones) [греч. stereos - твердый и eidos - вид; греч. hormao - привожу в движение, побуждаю] - группа физиологически активных веществ (половые гормоны, кортикостероиды, гормональная форма витамина D), регулирующих процессы жизнедеятельности у животных и человека. У позвоночных стероидные гормоны синтезируются из холестерина) в коре надпочечников, клетках Лейдига семенников, в фолликулах и желтом теле яичников, а также в плаценте. Стероидные гормоны содержатся в составе липидных капель в цитоплазме в свободном виде. В связи с высокой липофильностью стероидные гормоны относительно легко диффундируют через плазматические мембраны в кровь, а затем проникают в клетки-мишени. В организме человека присутствуют шесть стероидных гормонов: прогестерон, кортизол, альдостерон, тестостерон, эстрадиол и кальцитриол (устаревшее название кальциферол). За исключением кальцитриола эти соединения имеют очень короткую боковую цепь из двух углеродных атомов или не имеют ее вовсе. Стероидные гормоны, выполняющие сигнальную функцию, встречаются также у растений.

2. Объясните, как восковой слой на поверхности листьев участвует в регуляции водного баланса растений.

Растения, произрастающие в засушливом климате, имеют множество приспособлений для выживания в неблагоприятных условиях. Это восковой налет на листовой пластинке некоторых видов растений. Блестящая поверхность крупных уплощенных листьев фикуса из семейства Тутовых имеет свойство отражать солнечный свет. Способствует сокращению потерь воды листьями в засушливых районах.

3. В организме может существовать запас витаминов. Подумайте, какие витамины - жирорастворимые или водорастворимые - могут депонироваться в тканях. Объясните свою точку зрения.

Ткани состоят из клеток, клетки на 80-90% состоят из воды, водорастворимые витамины легко растворяются в воде и депонироваться (накапливаться) не смогли бы, занчит витамины должны быть жирорастворимые.

1. Функции липидов.

Функции липидов в организме разнообразны (рис. 5.1). Это основной энергетический материал. При сгорании 1 г триацилглицеролов, главного компонента липидов, выделяется 38,9 кДж (9,0 ккал), что в 2 раза больше, чем при сгорании белков или углеводов. Липиды в организме играют роль резервного материала, используемого при ухудшении питания или заболеваниях. Они являются также структурным элементом тканей, в составе клеточных оболочек и внутриклеточных образований.

Липиды - источник синтеза стероидных гормонов, которые во многом обеспечивают приспособление организма к различным стрессовым ситуациям. В нервной ткани содержится до 25% липидов, в клеточных мембранах - до 40%.

Липопротеины – соединения липидов с белками – выполняют транспортную функцию: они являются переносчиками жирорастворимых витаминов А, D, E и К в организме. Кроме того, липопротеины представляют собой источник для синтеза простагландидов, тромбоксанов и группы других соединений, защищающих организм. Липиды участвуют также в процессах терморегуляции, защищая организм от холода; способствуют закреплению в определенном положении таких внутренних органов, как почки, кишечник, и предохраняют их от смещения при сотрясении.

Рис. 5.1. Основные функции липидов в человеческом организме

2. Пищевая ценность отдельных групп липидов. Нормы их потребления

Наиболее важная и распространенная группа простых нейтральных липидов – ацилглицеринов. Ацилглицерины – (или глицериды) – это сложные эфиры глицерина и высших карбоновых кислот. Они составляют основную массу липидов (иногда до 95%) и, по существу, именно их называют жирами или маслами. В состав жиров диацилглирерины и моноацилглицерины.

Триацилглицерины (ТАГ), молекулы которых содержат одинаковые остатки жирных кислот, называются простыми, в противном случае - смешанными. Природные жиры и масла содержат, главным образом, смешанные триацилглицерины.

Пищевые жиры относятся к классу липидов, представляющих собой группу соединений животного, растительного или микробного происхождения. Они практически нерастворимы в воде и хорошо растворимы в неполярных органических растворителях. Жиры, добываемые из растительного сырья, называют растительными жирными маслами, а жиры наземных животными жирами. Особую группу составляют жиры морских млекопитающих и рыб.

Чистые ацилглицерины – бесцветные вещества без вкуса и запаха. Окраска, запах и вкус природных жиров определяются наличием в них специфических примесей, характерных для каждого вида жира. Температуры плавления и застывания ацилглицеринов не совпадают, что обусловлено наличием нескольких кристаллических модификаций.

Важнейшая составная часть жиров – жирные кислоты, насыщенные и ненасыщенные (табл. 5.1.).

Таблица 5.1. Основные карбоновые кислоты, входящие в состав природных масел и жиров

*В символ входят число атомов углерода и количество двойных связей между углеродными атомами в молекуле кислоты, номер первого ненасыщенного атома углерода от метильного атома углерода конфигурация.

Жирные кислоты в основном и определяют свойства жира. Чем больше в жирах полиненасыщенных жирных кислот, тем они более биологически активны. Самые распространенные жирные кислоты – пальмитиновая, олеиновая, линолевая.

Насыщенные жирные кислоты содержатся в коровьем масле (масляная, капрновая), животном жире (пальмитиновая, стеариновая, миристиновая), рыбьем жире и земляных орехах (арахиновая), рапсовом масле (бегеновая).

Насыщенные жирные кислотыиспользуются в основном как энергетический материал, содержатся в наибольших количествах в животных жирах, что определяет высокую температуру плавления этих жиров и их твердое состояние. Они содержатся в мясе животных и субпродуктах.

Ненасыщенные жирные кислоты подразделяются на мононенасыщенные (содержат одну ненасыщенную водородом связь) и полиненасыщенные (несколко связей). Простые ненасыщенные жирные кислоты содержатся в рыбьем жире (эруковая, гадолеиновая), масле, жире, орехах (олеиновая), а также в молочном жире (пальмитолеиновая). Полиненасыщенные жирные кислоты содержатся в масле семян, рыбьем жире (линолевая, линоленовая, арахидоновая, клупонодоновая). Полиненасыщенные жирные кислоты (ПНЖК): линолевая, линоленовая – относятся к незаменимым формам питания, так как в организме они не синтезируются и потому должны поступать с пищей. Эти кислоты по своим биологическим свойствам относятся к жизненно необходимым веществам и называются «Витамин F».

Линолевая кислота превращается в организме в арахидоновую, а линоленовая – эйкозапентаеновую. Недостаточное поступление с пищей линолевой кислоты вызывает в организме нарушение биосинтеза арахидоновой кислоты.

Арахидоновая кислота предшествует образованию веществ, участвующих в регуляции многих процессов жизнедеятельности тромбоцитов и других элементов, но особенно простагландинов, которым придают большое значение как веществам высочайшей биологической активности. Простагландины обладают гормоноподобным действием, в связи с чем получили название «гормонов тканей», так они синтезируются непосредственно из фосфолипидов мембран. Синтез простагландидов зависит от обеспеченности организма этими кислотами.

ПНЖК, образующиеся из линолевой кислоты (эйкозопентановая и докозагексановая), также постоянно в мембранных липидах, но в значительно меньших количествах, чем арахидоновая кислота. ПНЖК участвуют в образовании липидов, вместе с которыми входят в состав клеточных мембран. Воздействуют на структуру кожи и волос, снижают артериальное давление, способствуют профилактике артрита, понижают уровень холестерина и триглицеридов, уменьшают риск тромбообразования; оказывают положительное воздействие при заболеваниях сердечно-сосудистой системы, кандидозе, экземе, псориазе; требуются для нормального развития и функционирования мозга.

Установленная связь ненасыщенных жирных кислот с обменом холестерина. Они способствуют быстрому преобразованию холестерина в фолиевые кислоты и выведению их из организма, оказывают нормализующее действие на стенки кровеносных сосудов, повышают их эластичность и снижают проницаемость. Выявлена зависимость связи ненасыщенных жирных кислот и обмена витаминов группы В. При их дефиците снижается интенсивность роста и устойчивость к неблагоприятным внешним и внутренним факторам, угнетается репродуктивная функция, недостаточность ненасыщенных жирных кислот оказывает влияние на сократительную способность миокарда, вызывает поражение кожи, способствуют развитию атеросклероза. Прием ПНЖК стимулирует систему иммунологической защиты организма, благотворно влияет на внешний вид кожных покровов, способствует более быстрому лечению воспалительных заболеваний желудка, язвенной болезни желудка и двенадцати перстной кишки, способствует оздоровлению и улучшению функции капилляров, эффективен при лечении сахарного диабета и бронхиальной астмы. Особенно много ПНЖК в растительных маслах.

По современным представлениям, сбалансированным считают следующий жирнокислотный состав триацилглицеролов: полиненасыщенные жирные кислоты – 10%, мононенасыщенные – 60%, насыщенные – 30% суточная потребность человека в линолевой кислоте – 4-10 г, что соответствует 20-30 г растительных масел.

По биохимической классификации линолевая кислота и продукты ее превращения объединяются в семейство ω-6 – по положению первой двойной связи в молекуле жирной кислоты, считая от метильного (первого в цепи) атома углерода. Продукты превращения другой незаменимой жирной кислоты – линоленовой – отличаются от представителей жирных кислот семейства ω-6 тем, что у них первая двойная связь от метильного атома углерода занимает положение 3. Поэтому линоленовая кислота и ее продукты превращения образуют семейство ω-3. Жирные кислоты одного семейства в живых организмах не переходят в другое.

На основании современных представлений о физиологической роли ПНЖК разных семейств возникло самостоятельное направление в современной диетологии. Практическим следствием нового направления явилось признание необходимости нормирования и обеспечения постоянного поступления с пищей ПНЖК семейства ω-3. Рассматривается необходимость обеспечения от 0,2 до 0,8% энергоценности рациона за счет линоленовой кислоты, в то время как линолевая кислота (семейство ω-6) должна составлять 4-8% энергоценности. Следовательно, потребность в линоленовой кислоте оценивается в 1/8-1/10 потребности в линолевой. Установлено, что из всех видов растительных масел только соевое имеет соотношение этих двух кислот, близкое к рекомендуемому.

Липиды морских рыб и беспозвоночных содержат главным образом две кислоты семейства ω-3: эйкозапентаеновую и докозагексаеновую. Такой тип липидов получил название «морского». Применение ПНЖК семейства ω-3 в клинике является эффективным методом профилактики атеросклероза и ишемической болезни сердца (ИБС). У больных, перенесших инфаркт миокарда, увеличение содержания в пище линоленовой жирной кислоты в виде изготовленного из рыбьего жира маргарина в течение 5 лет снизило смертность от ИБС на 50%.

Британский фонд питания определил идеальное соотношение в рационе питания человека между ПНЖК семейства ω-6 и ПНЖК ω-3 в количестве 6:1, тогда как, по другим данным, это соотношение должно составлять 10:1. На этом соотношении основана известная рекомендация существенного увеличения потребления жирной рыбы.

Много ненасыщенных жирных кислот содержится в рыбьем жире, в свежей рыбе, в грецких орехах, семенах тыквы, оливках, в льняном, рапсовом масле, примуле вечерней, миндале.

Содержание арахидоновой кислоты в пищевых продуктах незначительно и составляет, %: в мозгах – 0,5; яйцах – 0,1; свиной печени – 0,3; сердце – 0,2. Организмы морских животных, особенно рыб, таких как атерина каспийская, треска, сайра, беломорская и атлантическая сельдь, путассу, антарктический планктонный рачок, голомянка большая, разные виды акул, характеризуются высоким содержанием полиненасыщенных жирных кислот липидной фракции. Наиболее замечательной чертой морских организмов является наличие в их липидных фракциях весьма высоких количеств ПНЖК с 5 и 6 двойными связями. Содержание докозагексаеновой кислоты в жире акулы сельдевой достигает 30%. В общем, в липидах морских организмов содержание высших полиненасыщенных жирных кислот с 4 связями достигает 10%, с 5-30% и с 6-40%.

Важнейшими представителями сложных липидов являются фосфолипиды. Молекулы фосфолипидов построены из остатков спиртов (глицерина, сфиногозина), жирных кислот, фосфорной кислоты (Н 3 РО 4), а также содержат азотистое основание (чаще всего холин (НО-СН 2 -СН 2 -(СН 3) 3 N) + ОН или этаноламин НО-СН 2 -СН 2 -NH 2), остатки аминокислот и некоторых других соединений.

Фосфолипиды – основной компонент биомембран клеточных структур, они играют существенную роль в проницаемости клеточных оболочек и внутриклеточном обмене. Наиболее важны из фосфолипидов - фосфатидилхолин, или лецитин, проявляет липотропное действие, препятствуя ожирению печени и лучшему усвоению жиров.

Недостаток фосфатидов в рационе приводит к накоплению жира в печени, к ее ожирению, а за тем и к циррозу. Суточная потребность в фосфатидах здорового взрослого человека – 5-10 г.

Лецитин встречается во всех тканях растительного и животного происхождения в семенах масличных растений количество может достигать 1-1,5%, в некоторых тканях животного организма – 6-10%. Лецитином богаты яичные желтки, икра, мозги, печень. Источником лецитина являются, также нерафинированные растительные масла, в том числе и облепиховые, а также молочные жиры. В жирах сливок и сметаны лецитина больше, чем в сливочном масле. В говяжьем, свином, бараньем жирах лецитина почти нет. источником фосфатидов также могут служить бобовые (соя, горох), семена подсолнечника, орехи, особенно кедровые.

При оценке пищевых жиров наиболее высоко ценятся жиры, содержащие лецитин. Для промышленных целей лецитин и кефалин (фосфатидилэтаноламины) получают из соевых бобов. Они используются при производстве шоколада, маргарина и как антиоксиданты в жирах.

Среди сопутствующих жирам неомыляемых веществ важное место занимают стеарины.

Стеарины – алициклические вещества, входящие в группу стероидов, овычно они представляют собой кристаллические одноатомные спирты (стеролы) или их эфиры (стериды). Различают зоостерины, выделяемые из животных объектов, фитостерины (из ратсений), микостерины, выделяемые из грибов. Стерины имеют в своей основе структуру пергидроциклопентанофенантрена

Наиболее известным стерином является холестерин. Он входит в став животных жиров. У млекопитающих он служит предшественником ряда важнейших активных веществ: гормонов, некоторых витаминов, желчных кислот. Холестерин является предшественником гормонов, относящихся к группе стероидных гормонов, в том числе женских половых гормонов прогестерона, эстрадиола и мужского полового гормона тестостерона.

Таблица 5.2. Содержание холестерина в продуктах

При варке мяса и рыбы теряется до 20% холестерина. Обычный суточный рацион – 500 мг холестерина. Известно, что его высокий уровень в крови является фактором риска возникновения атеросклероза, поэтому при соответствующих заболеваниях рекомендуется ограничить потребление пищевых продуктов с его высоким содержанием. В странах, где потребляют наименьшее количество животных жиров (большинство стран Африки, Индия, Япония), содержание холестерина в крови гораздо ниже, чем в США, Англии, Финляндии. Известно, что уменьшение содержания холестерина в крови на 1% приводит к уменьшению риска развития сердечно-сосудистых заболеваний на 2%. Холестерин необходим для синтеза витамина D, желчных кислот, гормонов половых желез и коры надпочечников, а также регуляции проницаемости мембран клеток.

Из фитостеринов, содержащихся в жире растительных продуктов питания, наиболее активным считается β-ситостерин. Он является антогонистом холестерина, задерживает его всасывание в кишечник. Он в больших количествах содержится в растительных маслах. Особенно его много в соевом масле. Β-ситостерол встречается и в мякоти плодов грейпфрута – как в несвязанной форме, так и в виде глюкозида, в семенах грейпфрута он присутствует лишь в свободной форме. Он служит препятствием для абсорбции холестерина, тем самым предотвращая повышение уровня холестерина в сыворотке. Потребление в пищу продуктов, содержащих фитостерин, снижает уровень холестерина в крови.

Рекомендуемое содержание жиров в рационе человека – 90-100 г в сутки, при этом 1/3 их должны составлять растительные масла, 2/3 – животные. По данным ВОЗ, нижний предел безопасного потребления жиров составляет для взрослых мужчин и женщин 25-30 г/сутки.

Недостаток или избыток жиров практически одинаково опасны для организма человека (рис. 5.2.). При низком содержании жира в рационе, особенно у людей с нарушенным обменом веществ, сначала появляется сухость и гнойничковые заболевания кожи, затем наступает выпадение волос и нарушение пищеварения, понижается сопротивляемость организма к инфекциям, нарушается обмен витаминов.

При избыточном потреблении жиров происходит их накопление в крови, печени и других тканях и органах. Кровь становится вязкой, повышается ее свертываемость, что предрасполагает к закупорке кровеносных сосудов, возникает атеросклероз. Избыток жира приводит также к ожирению – одному из распространенных заболеваний во многих развитых странах, где потребление жиров на душу населения увеличивается или высока доля жира в традиционных рационах питания.

Рядом ученых высказывается мнение, что существует прямая связь между раком толстого кишечника и потреблением жирной пищи. Высокое содержание жира в пище приводит к увеличению концентрации желчных кислот, поступающих с желчью в кишечник. Желчные кислоты и некоторые другие составные части желчи, а также продукты распада животных белков оказывают на кишечную стенку либо канцерогенное влияние непосредственно, либо под действием кишечной микрофлоры превращаются в продукты, обладающие канцерогенным эффектом. Аналогично этому при избытке ПНЖК, поступающих за счет растительных масел или рыбьих жиров, образуется много окислительных продуктов их обмена – свободных радикалов, - отравляющих печень и почки, снижающих их иммунитет и также оказывающих канцерогенное действие.


Похожая информация.


К основным биологическим функциям липидов относят следующие:

Энергетическая - при окислении липидов в организме выделяется энергия (при окислении 1 г липидов выделяется 39,1 кДж);

Структурная - входят в состав различных биологических мембран;

Транспортная - участвуют в транспорте веществ через липидный слой биомембраны;

Механическая - липиды соединительной ткани, окружающей внутренние органы, и подкожного жирового слоя предохраняют органы от повреждений при внешних механических воздействиях;

Теплоизолирующая - благодаря своей низкой теплопроводности сохраняют тепло в организме.

В таблице 2 перечислены функции основных классов липидов: жиров (триацилглицеринов), глицерофосфолипидов, сфингофосфолипидов, гликолипидов, стероидов - в организме человека.

Таблица 2 - Функции основных классов липидов в организме человека

Класс липидов

Преимущественная локализация в организме

Триацилглицерины (жиры)

Запасание энергии; термоизоляция; механическая защитная функция

Клетки жировой ткани

Глицерофосфолипиды

Структурные компоненты мембран

Мембраны клеток; монослой на поверхности липопротеинов

Сфингофосфолипиды

Основные структурные компоненты мембран клеток нервной ткани

Миеленовые оболочки нейронов; серое вещество мозга

Гликолипиды

Компоненты мембран нервной ткани; антигенные структуры на поверхности разного типа; рецепторы; структуры, обеспечивающие взаимодействие клеток

Внешний слой клеточных мембран

Стероиды

Компоненты мембран; предшественники в синтезе желчных кислот и стероидных гормонов

Мембраны клеток; липопротеины крови

Роль липидов в питании человека

Растительные жиры и масла являются обязательным компонентом пищи, источником энергетического и пластического материала для человека, поставщиком ряда необходимых для него веществ (непредельных жирных кислот, фосфолипидов, жирорастворимых витаминов, стеринов), то есть они являются незаменимыми факторами питания, определяющими его биологическую эффективность. Рекомендуемое содержание жира в рационе человека (по калорийности) составляет 30--33%; для населения южных зон нашей страны рекомендуется -- 27-28%, северных -- 38-40% или 90--107 г в сутки, в том числе непосредственно в виде жиров 45--50 г.

Длительное ограничение жиров в питании или систематическое использование жиров с пониженным содержанием необходимых компонентов, в том числе сливочного масла, приводит к отклонениям в физиологическом состоянии организма: нарушается деятельность центральной нервной системы, снижается устойчивость организма к инфекциям (иммунитет), сокращается продолжительность жизни. Но и избыточное потребление жиров нежелательно, оно приводит к ожирению, сердечнососудистым заболеваниям, преждевременному старению.

В составе пищевых продуктов различают видимые жиры (растительные масла, животные жиры, сливочное масло, маргарин, кулинарный жир) и невидимые жиры (жир в мясе и мясопродуктах, рыбе, молоке и молочных продуктах, крупе, хлебобулочных и кондитерских изделиях). Это, конечно, условное деление, но оно широко применяется.

Наиболее важные источники жиров в питании -- растительные масла (в рафинированных маслах 99,7-99,8% жира), сливочное масло (61,5-82,5% липидов), маргарин (до 82,0% жира), комбинированные жиры (50-72% жира), кулинарные жиры (99% жира), молочные продукты (3,5--30% жира), некоторые виды кондитерских изделий -- шоколад (35-- 40%), отдельные сорта конфет (до 35%), печенье (10-11%); крупы -- гречневая (3,3%), овсяная (6,1%); сыры (25--50%), продукты из свинины, колбасные изделия (10--23% жира). Часть этих продуктов является источником растительных масел (растительные масла, крупы), другие -- животных жиров.

В питании имеет значение не только количество, но и химический состав употребляемых жиров, особенно содержание полиненасыщенных кислот с определенным положением двойных связей и цис-конфигурацией (линолевой С 2 18 ; альфа- и гамма-линоленовой С 3 18 ; олеиновой С 1 18 ; арахидоновой С 4 20 ; полиненасыщенных жирных кислот с 5--6 двойными связями семейства омега-3).

Рисунок 7 - Жиры, содержащие полиненасыщенные кислоты с определенным положением двойных связей и цис-конфигурацией

Линолевая и линоленовая кислоты не синтезируются в организме человека, арахидоновая -- синтезируется из линолевой кислоты при участии витамина В 6 . Поэтому они получили название «незаменимых» или «эссенциальных» кислот. Линоленовая кислота образует другие полиненасыщенные жирные кислоты. В состав полиненасыщенных жирных кислот семейства омега-3 входят: а-линоленовая, эйкозапентаеновая, докозагексаеновая кислоты. Линолевая, у-линоленовая, арахидоновая кислоты входят в семейство омега-6. Рекомендуемое Институтом питания РАМ Н соотношение омега 6/омега 3 в рационе составляет для здорового человека 10: 1, для лечебного питания -- от 3: 1 до 5: 1.

Более 50 лет назад была доказана необходимость присутствия ряда этих структурных компонентов липидов для нормального функционирования и развития человеческого организма. Они участвуют в построении клеточных мембран, в синтезе простагландинов (сложные органические соединения), участвуют в регулировании обмена веществ в клетках, кровяного давления, агрегации тромбоцитов, способствуют выведению из организма избыточного количества холестерина, предупреждая и ослабляя атеросклероз, повышают эластичность стенок кровеносных сосудов. Но эти функции выполняют только цис-изомеры ненасыщенных кислот. При отсутствии «эссенциальных» кислот прекращается рост организма и возникают тяжелые заболевания. Биологическая активность указанных кислот неодинакова. Наибольшей активностью обладает арахидоновая кислота, высокой -- линолевая, активность линоленовой кислоты значительно (в 8-10 раз) ниже линолевой.

В последнее время особое внимание привлекают ненасыщенные жирные кислоты семейства омега-3, присутствующие в липидах рыб.

Среди продуктов питания наиболее богаты полиненасыщенными кислотами растительные масла (табл.3), особенно кукурузное, подсолнечное, соевое. Содержание в них линолевой кислоты достигает 50--60%, значительно меньше ее в маргарине -- до 20%, крайне мало в животных жирах (в говяжьем жире -- 0,6%). Арахидоновая кислота в продуктах питания содержится в незначительном количестве, а в растительных маслах ее практически нет. В наибольшем количестве арахидоновая кислота содержится в яйцах -- 0,5, субпродуктах 0,2--0,3, мозгах -- 0,5%.

В настоящее время считают, что суточная потребность в линолевой кислоте должна составлять 6 - 10 г, минимальная -- 2 - 6 г, а ее суммарное содержание в жирах пищевого рациона -- не менее 4% от общей калорийности. Следовательно, состав жирных кислот липидов в пищевых продуктах, предназначенных для питания молодого, здорового организма, должен быть сбалансированным: 10 - 20% -- полиненасыщенных, 50 - 60% -- мононенасыщенных и 30% насыщенных, часть из которых должна быть со средней длиной цепи. Это обеспечивается при использовании в рационе 1/3 растительных и 2/3 животных жиров. Для людей пожилого возраста и больных сердечно-сосудистыми заболеваниями содержание линолевой кислоты должно составлять около 40%, соотношение полиненасыщенных и насыщенных кислот -- приближаться к 2: 1, соотношение линолевой и линоленовой кислот --10: 1 (Институт питания РАМН)

Таблица 3 - Содержание жирных кислот (в %) и характеристики масел и жиров

Жиры и масла

насыщенных

ненасыщенных

основных

С 2 18 46 - 65

Хлопковое

Подсолнечное

Рапсовое

Эруковая 1 - 52

Оливковое

Кокосовое

Пальмовое

Пальмоядровое

Масло какао

Животные жиры

Способность жирных кислот, входящих в состав липидов, наиболее полно обеспечивать синтез структурных компонентов клеточных мембран характеризуют с помощью специального коэффициента (Институт питания РАМН), отражающего соотношение количества арахидоновой кислоты, которая является главным представителем полиненасыщенных жирных кислот в мембранных липидах, к сумме всех других полиненасыщенных жирных кислот с 20 и 22 атомами углерода. Этот коэффициент получил название коэффициента эффективности метаболизации эссенциальных жирных кислот (КЭМ):

По современным представлениям наиболее целесообразно использовать в каждый отдельный прием пищи жиры, имеющие сбалансированный состав, а не потреблять жировые продукты различного состава в течение суток.

Важной в питании группой липидов являются фосфолипиды, участвующие в построении клеточных мембран и транспорте жира в организме, они способствуют лучшему усвоению жиров и препятствуют ожирению печени. Общая потребность человека в фосфолипидах до 5--10 г в сутки.

Отдельно хочется остановиться на физиологической роли холестерина. Как известно, при повышении его уровня в крови опасность возникновения и развития атеросклероза возрастает; 80% холестерина содержится в яйцах (0,57%), сливочном масле (0,2-0,3%), субпродуктах (0,2-0,3%).

Суточное его потребление с пищей не должно превышать 0,5 г. Растительные жиры -- единственный источник витамина Е и в-каротина, животные жиры -- витаминов А и D.