Твердая оболочка мозга образована плотной оформленной. Важные функции твёрдой мозговой оболочки. Модуль коры мозжечка


Кровоснабжение твердой мозговой оболочки у человека осуществляется тремя артериями-передней, средней, задней и сосцевидной ветвью затылочной артерии.

Передняя артерия твердой мозговой оболочки - a . meningea anterior является ветвью передней решетчатой артерии - a . ethmoidalis anterior , она снабжает своими ветвями твердую мозговую оболочку передней черепной ямки.

Средняя артерия твердой мозговой оболочки - a . meningea media - самая крупная из всех артерий. Она возникает из внутренней челюстной артерии - a . maxillaris interna в толще околоушной железы под нижнечелюстным суставом и направляется вверх вместе с остистым нервом - п. spinosus , проходя в полость черепа через остистое отверстие - foramen spinosum .

В полости черепа артерия делится на переднюю и заднюю ветви, которые разветвляются в твердой мозговой оболочке не только средней черепной ямки, но и в области передней и задней черепных ямок. Ветви средней артерии твердой мозговой оболочки анастомозируют с ветвями передней и задней артерий.

Задняя артерия твердой мозговой оболочки - a . meningea posterior - тонкая ветвь восходящей глоточной артерии - a . pharyn ea ascendens . Она проникает в заднюю черепную ямку чаще всего через яремное отверстие - foramen jugulare , реже - через рваное отверстие - foramen lacerum или через канал внутренней сонной артерии.

Сосцевидная ветвь (ramus mastoideus ) затылочной артерии вступает в полость черепа через сосцевидное отверстие - foramen mastoideum . Кроме этого, твердая мозговая оболочка получает rami menimrei от позвоночной артерии, отходящие от нее в области задней черепной ямки.

Ф. В. Овсянников и М. Д. Лавдовский указывают, что в толще твердой мозговой оболочки имеются верхний и нижний слои сосудов. В верхнем слое расположены артерии, каждая из которых сопровождается двумя венами. И артерии, и вены делятся дихотомически Между артериальными и венозными разветвлениями имеются многочисленные анастомозы. Нижний слой сосудов представляет собой капиллярную сеть. Apiepnn верхнего слоя посылают в нижний многочисленные веточки, проходящие через твердую мозговую оболочку. В узловых точках нижнего слоя располагаются колбообразные расширения, сообщающиеся с венами верхнего слоя посредством сосудистых веточек, проходящих также через ткань твердой оболочки.

В работе Пожникова отмечается, что артерии твердой мозговой оболочки имеют тонкие стенки. На стороне, обращенной к мозгу, они снабжены не только круговыми, но и продольными мышечными волокнами Adventitia отсутствует, ее заменяет твердая мозговая оболочка, непосредственно прилегающая к наружному эластическому слою средней оболочки сосуда.

В большинстве работ сосуды твердой мозговой оболочки изучались по sulci meningei на костях черепа, т. е. косвенным путем.

Такой метод изучения неточен; он исключает возможность анализа структуры тонких сосудов, взаимоотношения их с оболочкой, сосудами покровов черепа и мозга. Этим способом невозможно изучать тип распределения сосудов твердой мозговой оболочки у детей, у которых, как известно, борозды на костях выражены слабо.

Изучение сосудов твердой мозговой оболочки на трупах лучше всего производить после инъекции тушью по способу Б. В. Огнева. Ниже описываются данные, полученные при изучении этих сосудов по определенным областям мозга.

Лобная область ограничена sutura coronalis et sutura frontalis. Медиальный участок этой области, расположенный по бокам от crista galli et crista frontalis , снабжается кровью от a . meningea anterior . Ветви передней оболочечной артерии анастомозируют с системой ветвей от rami anteriores a . meningeae mediae . Последняя снабжает кровью всю остальную часть области, перейдя из соседней височно-теменной. От основных стволов, имеющих диаметр, равный от 0,2 до 0,25 мм, отходят под острыми углами 3-5 ветвей первого порядка диаметром от 0,2 до 0,09 мм. Между последними имеются в форме неправильных петель анастомозы, величина которых равна от 0,9 до 0,5 мм.

Сосуды первого порядка отдают ветви второго порядка диаметром от 0,1 до 0,08 мм, которые в свою очередь делятся на ветви третьего порядка диаметром в 0,05 мм. Ветви четвертого порядка имеют диаметр, равный 0,04 мм, пятого-от 0,04 до 0,02 мм и т. д. От ветвей восьмого-девятого порядка, имеющих диаметр, равный 0,02 мм, отходят капилляры диаметром 0,008 мм несколько извитой формы. Капилляры анастомозируют между собой, создавая густую сеть в форме ромбов, трапеций и параллелограммов. Величина петель равна 0,1-0,15 мм.

Височно-теменная область ограничена вверху sutura sagittalis , сзади sutura lambdoidea . Все сосуды области направляются в сторону швов. В области продольного, венечного и ламбдовидного швов они образуют мощные сплетения. Основные ветви средней оболочечной артерии, имеющие диаметр, равный 0,8-1 мм, слегка извиты. От них отходят под различными углами с интервалами в 1-2 мм сосуды первого порядка. Отдавая последовательно ветви вплоть до девятого-десятого порядка, артерии переходят в капилляры.

Затылочная область. Сосуды этого отдела тесно связаны с сосудами отрогов твердой оболочки и той ее части, которая выстилает внутреннее основание черепа. В то же время по ходу ламбдовидного шва нет прямых анастомозов с сосудами других областей. Архитектоника сосудов данного отдела имеет следующие особенности. По бокам от наружного гребня затылочной кости параллельно ему тянутся снизу вверх два ствола задней оболочечной артерии. Их диаметр равен 0,35-0,5 мм. Они многократно анастомозируют между собой. От этих параллельно идущих основных стволов отходят с интервалами в 5-6 мм в наружную сторону ветви первого порядка диаметром 0,15-0,1 мм. От ветвей девятого-десятого порядка отходят капилляры. Последние образуют анастомозы в форме овалов и треугольников.

Область основания. Это, по-видимому, наиболее густо снабженная сосудами область твердой мозговой оболочки. Сосуды всех порядков имеют извитую форму. Основные сосуды имеют диаметр 0,5-0,6 мм. Ветви первого порядка диаметром 0,15-0,2 мм отходят под острыми и тупыми углами, образуя петли самой различной формы. Величина петель колеблется от 1 до 0,6 мм. Ветви второго порядка имеют диаметр, равный 0,2 мм. Диаметр ветвей третьего порядка колеблется от 80 до 100 мм . Постепенно разветвляясь, вплоть до девятого порядка, сосуды переходят в капилляры, а последние - в vasa serosa , имеющие диаметр, равный 5. Капилляры создают чрезвычайно густую мелкопетлистую сеть, состоящую из двух слоев - поверхностного и глубокого.

Отроги твердой мозговой оболочки. Интенсивность кровоснабжения мозгового серпа не на всем протяжении одинакова. В переднем и среднем отделах кровоснабжение хуже, чем в заднем Это, вероятно, является следствием того, что передний и средний отделы получают кровь от крупного

сплетения, заложенного в толще крыши верхнего сагиттального синуса, тогда как задний отдел снабжается из сосудов затылочной области.

Основные сосуды мозгового серпа имеют вертикальное направление. По характеру деления это - магистральные сосуды. Диаметр их равен 0,25 мм. Ветви первого порядка диаметром 0,15-0,25 мм образуют цепь анастомозов, расположенную у фиксированного края серпа. Ветви первого порядка отходят большей частью под острыми углами. Многоугольные петли, образуемые анастомозами, имеют величину, равную 0,1-0,2 мм. Ветви второго порядка имеют диаметр от 0,1 до 0,2 мм, третьего порядка от 0,1 до 0,05 мм. Наконец, ветви девятого порядка диаметром в 80 мм постепенно переходят в vasa serosa диаметром 5 мм, создающие своими анастомозами густую сеть в форме овалов. Величина этих овалов равна 40 fx .

Мозжечковый намет снабжается веточками задней оболочечной артерии, расположенной в затылочной области. Основные сосуды со средним диаметром 0,3 мм разветвляются, рассыпаясь в разных направлениях. От них начинаются ветви второго (0,1 мм), третьего и т. д. порядков, вплоть до восьмого. От последнего отходят капилляры. Все сосуды и их ветви извиты. Vasa serosa диаметром 5 мм дают анастомотические петли в форме многоугольников размером 20-50.

Мозговые оболочки (meninges) - три оболочки, покрывающие мозг: твердая оболочка (dura mater, pachymeninx), паутинная оболочка (arachnoidea), сосудистая оболочка (vasculosa). Две последние объединяют под названием мягкой оболочки (pia mater, leptomeninx).

Оболочки больших полушарий головного мозга

Твердая оболочка - фиброзного типа мембрана, прилежащая изнутри к костям черепа. Образует отростки, вдающиеся в полость черепа: серповидный отросток большого мозга (lalx cerebri), серповидный отросток мозжечка (falx cerebelli), намет мозжечка (tentorium cerebelli), диафрагму седла (diaphragma sellae) и др.

Между твердой мозговой оболочкой и костями черепа расположено эпидуральное пространство головного мозга, представляющее собой в действительности совокупность многочисленных пространств, разграниченных соединительнотканными трабекулами. Возникают эти пространства после рождения, в период закрытия родничков. В области свода эти пространства более широкие, так как трабекул здесь мало. На основании черепа, а также по ходу венозных синусов и черепных швов упомянутые пространства менее широкие и переплет трабекул очень густой. Этим и объясняется различная прочность сращения твердой мозговой оболочки с костями черепа: в области свода она легко отделяется от костей, в области основания - со значительным трудом. Все сообщающиеся пространства выстланы эндотелием и заполнены жидкостью. Экспериментально прослежено, что эпидуральная жидкость оттекает в наружную сеть капилляров твердой мозговой оболочки.

Твердая оболочка головного мозга разделяется на два более или менее плотно сращенных листка, из которых наружный является надкостницей черепных костей. Каждый из листков разделяется на слои. Во всех слоях преобладают коллагеновые волокна. Они собраны в пучки, расположенные в каждом из слоев параллельно. В смежных слоях пучки пересекаются, образуя решетку. Коллагеновые пучки оплетены аргирофильными волокнами. Эластические волокна твердой оболочки головного мозга образуют единую сеть, которая пронизывает все ее слои и лишь сгущается на внутренней и наружной поверхностях оболочки. Со стороны субдурального пространства твердая оболочка выстлана эндотелием. Различные ее участки функционально приспособлены к испытываемой ими механической нагрузке. Волокна располагаются в них по направлениям возникающих напряжений. Примером такой функциональной приспособленности является примыкающий к верхнему продольному синусу участок оболочки, в состав которого входят восемь слоев (рис. 1).

Рис. 1. Схема волокнистой конструкции твердой мозговой оболочки человека в районе верхнего продольного синуса. В месте впадения мозговой вены в синус пучки волокон образуют петлю, устраняющую спадение просвета вены (по Виммеру).

Рис. 2. Схема васкуляризации твердой мозговой оболочки человека: 1 - наружная сеть капилляров; 2 - артериовенозная сеть; 3 - внутренняя сеть капилляров (по Н. Я. Васину).

Кровеносные сосуды твердой оболочки головного мозга образуют три сети: 1) наружную сеть капилляров, 2) артериовенозную сеть и 3) внутреннюю сеть капилляров (рис. 2). Наружная сеть капилляров располагается наиболее поверхностно, в непосредственном соседстве с эпидуральным пространством головного мозга. Артериовенозная сеть залегает во внутренней части наружного листка твердой оболочки, где сконцентрированы крупные артерии и вены. Сильно извитые «штопорообразные» артерии сопровождаются по сторонам парными и, как правило, значительно более широкими венами. Сосудистые пучки дихотомически ветвятся. В некоторых местах парные вены заменяются чрезвычайно густой венозной сетью, которая окружает артерию. Посредством ветвей артериовенозная сеть соединена с наружной и внутренней сетями капилляров. Внутренняя сеть капилляров расположена под эндотелием, выстилающим обращенную к субдуральному пространству поверхность твердой оболочки. Эта сеть отличается значительной густотой и по степени развития намного превосходит наружную сеть капилляров. Для внутренней сети капилляров характерны малая протяженность их артериальной части и гораздо большая протяженность и петлистость венозной части капилляров.

Более крупными венозными коллекторами твердой оболочки головного мозга являются ее венозные синусы (рис. 3), стенки которых, как правило, образуются наружным и внутренним листками твердой оболочки. Венозные синусы являются гомологами венозного сплетения эпидурального пространства спинного мозга и также развиваются из эктоменингеальных вен. Стенки синусов, образованные плотной тканью твердой оболочки, не содержат мышечных элементов и выстланы изнутри эндотелием. Просвет их постоянно зияет. В синусах встречаются различной формы трабекулы и перепонки, но нет настоящих клапанов, вследствие чего в синусах возможны изменения направления тока крови.


Рис. 3. Схема венозных синусов твердой мозговой оболочки человека: 1 - sinus sagittalis sup.; 2 - v. cerebri magna; 3 - v. cerebri int.; 4 - sinus sagittalis inf.; 5 - v. Trolardi; в - v. basilaris; 7 - sinus intercavernosus; 8 - sinus cavernosus; 9 - plexus pterygoideus; 10 - plexus basilaris; 11 - sinus petrosus inf.; 12 - sinus petrosus sup.; 13 - v. facialis; 14 - v. jugularis int.; 15 - v. jugularis ext.; 16 - sinus transversus dext.; 17 - sinus occipitalis; 18 - torcular Herophili; 19 - v. Labbe; 20 - sinus rectus.


В клиническом отношении особо важное значение имеют: верхний продольный синус (sinus sagittalis superior) с впадающими в него боковыми лакунами (lacunae laterales), поперечный синус (sinus transversus), часто превосходящий по величине остальные синусы, прямой синус (sinus rectus), в который впадает вена Галена (v. cerebri magna), пещеристый синус (sinus cavernosus), через который проходит внутренняя сонная артерия. Венозные синусы отводят кровь от головного мозга, глазного яблока, среднего уха и твердой оболочки. Кроме того, посредством диплоэтических вен и санториниевых выпускников, теменных (v. emissaria parietalis), сосцевидных (v. emissaria mastoidea), затылочных (v. emissaria occipitalis) и других, венозные синусы связаны с венами черепных костей и мягких покровов головы и частично дренируют их.

Кровоснабжение твердой оболочки связано также с присущей твердой оболочке функцией резорбции субдуральной и эпидуральной жидкостей.

Экспериментальными исследованиями был установлен новый и, как выяснилось, основной путь оттока спинномозговой жидкости: из субарахноидального пространства жидкость направляется через паутинную оболочку в субдуральное пространство и далее во внутреннюю сеть капилляров твердой оболочки мозга.

Установлено, что так называемая субдуральная жидкость - это та же спинномозговая жидкость (см.), выделенная в субдуральное пространство через паутинную оболочку на пути своего оттока в кровеносное русло твердой мозговой оболочки.

Вместе со спинномозговой жидкостью перемещаются по этому пути введенные в субарахноидальное пространство различные недиффундирующие краски, изотоп коллоидного золота (Au 198), альбумины и глобулины сывороточного белка, меченные метионином (S 35), целые эритроциты, меченные фосфором или хромом (Р 32 , Cr 51), и пр. Особенно существенно, что выделение спинномозговой жидкости через паутинную оболочку удалось наблюдать в микроскопе без применения каких бы то ни было индикаторов. Приспособленность сосудистой системы твердой оболочки к резорбирующей функции этой оболочки выражается в максимальном приближении капилляров к дренируемым ими пространствам. Более мощное развитие внутренней сети капилляров по сравнению с наружной сетью объясняется более интенсивной резорбцией спинномозговой жидкости по сравнению с эпидуральной жидкостью. По степени проницаемости кровеносные капилляры твердой оболочки близки высокопроницаемым лимфатическим сосудам.

Иннервация твердой оболочки головного мозга осуществляется всеми тремя ветвями V пары черепно-мозговых нервов. Помимо V, в иннервации участвуют VI, IX, X, XI, XII пары и симпатические волокна нервных сплетений артерий.

Твердая мозговая оболочка, dura mater , представляет собой блестящую, беловатого цвета оболочку из плотной фиброзной ткани с большим количеством эластических волокон. Ее наружная шероховатая поверхность обращена к внутренней поверхности позвоночного канала и костей черепа; своей внутренней гладкой блестящей поверхностью, покрытой плоскими эпителиоидными клетками, она направлена к паутинной оболочке.

Твердая оболочка спинного мозга

Твердая оболочка спинного мозга, dura mater spinalis (рис. , ), образует широкий, вытянутый сверху вниз цилиндрической формы мешок. Верхняя граница этой оболочки располагается на уровне большого затылочного отверстия, по внутренней поверхности которого, а также лежащего ниже I шейного позвонка срастается с их надкостницей. Кроме того, она плотно связана с покровной мембраной и с задней атлантозатылочной мембраной, где ее прободает позвоночная артерия. Короткими соединительнотканными тяжами оболочка прикрепляется к задней продольной связке позвоночного столба. По направлению книзу мешок твердой оболочки несколько расширяется и, достигнув II–III поясничного позвонка, т. е. ниже уровня спинного мозга, переходит в нить (твердой оболочки) спинного мозга, filum terminale externum , которая прикрепляется к надкостнице копчика.

Отходящие от спинного мозга корешки, узлы и нервы твердая оболочка окутывает в виде влагалищ, расширяющихся по направлению к межпозвоночным отверстиям и принимающих участие в фиксации оболочки.

Твердую оболочку спинного мозга иннервируют ветви мозговой оболочки спинномозговых нервов; кровоснабжают ветви позвоночных артерий и ветви пристеночных артерий грудной и брюшной частей аорты; венозная кровь собирается в венозные позвоночные сплетения.

Твердая оболочка головного мозга

Рис. 958. Нервы твердой оболочки головного мозга (фотография. Препараты Б. Перлина). (Участки тотально окрашенной твердой мозговой оболочки.)

Твердая оболочка головного мозга, dura mater encephali (рис. , ), представляет собой крепкое соединительнотканное образование, в котором различают наружную и внутреннюю пластинки. Наружная пластинка, lamina externa , имеет шероховатую поверхность, богатую сосудами, и прилегает непосредственно к костям черепа, являясь их внутренней надкостницей. Проникая в отверстия черепа, через которые выходят нервы, она охватывает их в виде влагалища.

С костями свода черепа твердая оболочка головного мозга связана слабо, за исключением мест прохождения черепных швов, а на основании черепа она крепко сращена с костями.

У детей до заращения родничков соответственно их расположению твердая оболочка головного мозга плотно срастается с перепончатым черепом и тесно связана с костями свода черепа.

Внутренняя пластинка, lamina interna , твердой оболочки головного мозга гладкая, блестящая и покрыта эндотелием.

Твердая оболочка головного мозга образует отростки, которые располагаются между частями мозга, разделяя их.

По линиям прикрепления отростков твердой оболочки головного мозга в ней образуются пространства, имеющие на поперечном разрезе призматическую или треугольную форму – синусы твердой мозговой оболочки, представляющие собой коллекторы, по которым венозная кровь из вен головного мозга, глаз, твердой оболочки и черепных костей собирается в систему внутренних яремных вен. Эти пространства – синусы – имеют туго натянутые стенки, при разрезе не спадаются, клапаны в них отсутствуют. В полость ряда синусов открываются эмиссарные вены, посредством которых синусы через каналы в костях черепа сообщаются с венами покровов головы.

Твердая оболочка головного мозга иннервируется менингеальными ветвями тройничного и блуждающего нервов, симпатическими нервами от периартериальных сплетений (средней менингеальной артерии, позвоночной артерии, а также пещеристого сплетения), ветвями большого каменистого нерва и ушного узла; иногда в толще некоторых нервов имеются внутриствольные нервные клетки. Большая часть нервных ветвей мозговой оболочки следует по ходу сосудов этой оболочки, за исключением намета мозжечка, где сосудов в отличие от других участков твердой оболочки головного мозга мало и где большая часть нервных ветвей следует независимо от сосудов.

Первая ветвь тройничного нерва – глазной нерв посылает стволы к твердой оболочке головного мозга области передней черепной ямки, передним и задним участкам свода черепа, а также к серпу большого мозга, достигая нижнего сагиттального синуса, и к намету мозжечка (ветвь намета). Вторая и третья ветви тройничного нерва, верхнечелюстной нерв и нижнечелюстной нерв, посылают среднюю ветвь мозговой оболочки к оболочке области средней черепной ямки, намету мозжечка и серпу большого мозга. Указанные ветви распределяются и в стенках близлежащих венозных синусов.

К твердой оболочке головного мозга области задней черепной ямки, вплоть до намета мозжечка, и к стенкам поперечного и затылочного синусов тонкую ветвь мозговой оболочки посылает блуждающий нерв. Кроме того, в иннервации твердой оболочки головного мозга в той или иной степени могут принимать участие блоковый, языкоглоточный, добавочный и подъязычный нервы.

Кровоснабжается твердая оболочка головного мозга ветвями, подходящими от верхнечелюстной артерии (средняя менингеальная артерия); от позвоночной артерии (ветви к мозговой оболочке); от затылочной артерии (менингеальная ветвь и сосцевидная ветвь); от глазной артерии (отпередней решетчатой артерии – передняя менингеальная артерия). Венозная кровь собирается в близлежащих синусах твердой оболочки головного мозга.

Отростки твердой оболочки головного мозга

Различают следующие отростки твердой оболочки головного мозга (см. рис. , ).

  1. Серп большого мозга, falx cerebri , располагается в сагиттальной плоскости между обоими полушариями большого мозга, особенно глубоко входит своей передней частью. Начинаясь спереди от петушиного гребня решетчатой кости, серп большого мозга своим выпуклым краем прикрепляется к боковым ребрам борозды верхнего сагиттального синуса свода черепа и доходит до внутреннего затылочного выступа, где переходит в верхнюю поверхность намета мозжечка.
  2. Серп мозжечка, falx cerebelli , следует от внутреннего затылочного выступа, идет по внутреннему затылочному гребню и достигает заднего края большого затылочного отверстия, где переходит в две складки, ограничивающие отверстие сзади. Серп мозжечка залегает между полушариями мозжечка в области его задней вырезки.
  3. Намет мозжечка, tentorium cerebelli , натянут над задней черепной ямкой, между верхними краями пирамид височных костей и бороздами поперечных синусов затылочной кости, и отделяет затылочные доли большого мозга от мозжечка. Он имеет вид горизонтально расположенной пластинки, средняя часть которой оттянута кверху. Его передний свободный край вогнут и образует вырезку намета, incisura tentorii , ограничивающую отверстие намета. Здесь проходит стволовая часть мозга.
  4. Диафрагма седла, diaphragma sellae , натянута над турецким седлом, образуя как бы его крышу. Под ней залегает гипофиз. В середине диафрагмы седла находится отверстие, через него проходит воронка, на которой висит гипофиз.

В области тройничного вдавления, у вершины пирамиды височной кости, твердая оболочка головного мозга расщепляется на два листка. Эти листки образуют тройничную полость, cavum trigeminale , в которой залегает узел тройничного нерва.

Синусы твердой оболочки головного мозга

Различают следующие синусы твердой оболочки головного мозга (рис. ; см. рис. ).

1. Верхний сагиттальный синус, sinus sagittalis superior , располагается на выпуклой стороне верхнего края серпа большого мозга. Он начинается от петушиного гребня, направляется по срединной линии кзади, постепенно увеличиваясь в объеме, и у внутреннего затылочного выступа в области крестообразного возвышения вливается в поперечный синус.

По бокам от верхнего сагиттального синуса между листками твердой оболочки головного мозга располагаются различной величины многочисленные щели – боковые лакуны, lacunae laterales , в которые впячиваются грануляции.

2. Нижний сагиттальный синус, sinus sagittalis inferior , залегает по нижнему краю серпа большого мозга и вливается в прямой синус.

3. Поперечный синус, sinus transversus , располагается в одноименной борозде затылочной кости. Он является самым крупным из всех синусов. Огибая сосцевидный угол теменной кости, он продолжается в сигмовидный синус, sinus sigmoideus . Последний по одноименной борозде спускается к яремному отверстию и переходит в верхнюю луковицу внутренней яремной вены.

В синус открываются две эмиссарные вены, которые связаны с внечерепными венами. Одна из них находится в отверстии сосцевидного отростка, другая – на дне мыщелковой ямки затылочной кости, в непостоянном, чаще несимметричном, мыщелковом канале.

4. Прямой синус, sinus rectus , располагается по линии соединения серпа большого мозга с наметом мозжечка. Вместе с верхним сагиттальным синусом они вливаются в поперечный синус.

5. Пещеристый синус, sinus cavernosus , получил свое название вследствие многочисленных перегородок, придающих синусу вид пещеристой структуры. Синус располагается по бокам турецкого седла. На поперечном разрезе он имеет вид треугольника, в нем различают три стенки: верхнюю, наружную и внутреннюю. Верхнюю стенку прободает глазодвигательный нерв. Несколько ниже, в толще наружной стенки синуса, проходят блоковый нерв и первая ветвь тройничного нерва – глазной нерв. Между блоковым и глазным нервами залегает отводящий нерв.

Внутри синуса проходит внутренняя сонная артерия со своим симпатическим нервным сплетением. В полость синуса впадает верхняя глазная вена. Правый и левый пещеристые синусы сообщаются между собой в передних и задних отделах диафрагмы седла посредством межпещеристых синусов, sinus intercavernosi . Образующийся таким путем большой синус окружает со всех сторон лежащий в турецком седле гипофиз.

6. Клиновидно-теменной синус, sinus sphenoparietalis , парный, следует в медиальном направлении вдоль заднего края малого крыла клиновидной кости и впадает в пещеристый синус.

7. Верхний каменистый синус, sinus petrosus superior , также является притоком пещеристого синуса. Он располагается по верхнему краю пирамиды височной кости и соединяет пещеристый синус с поперечным синусом.

8. Нижний каменистый синус, sinus petrosus inferior , выходит из пещеристого синуса, залегает между скатом затылочной кости и пирамидой височной кости в борозде нижнего каменистого синуса. Он впадает в верхнюю луковицу внутренней яремной вены. К нему подходят вены лабиринта.

9. Базилярное сплетение, plexus basilaris , располагается на базилярной части тела затылочной кости. Оно образуется путем слияния нескольких соединительных венозных ветвей между обоими нижними каменистыми синусами.

10. Затылочный синус, sinus occipitalis , залегает вдоль внутреннего затылочного гребня. Он выходит из поперечного синуса, делится на две ветви, которые охватывают боковые края большого затылочного отверстия и вливаются в сигмовидный синус. Затылочный синус анастомозирует с внутренними позвоночными венозными сплетениями. В том месте, где соединяются поперечный, верхний сагиттальный, прямой и затылочный синусы, образуется венозное расширение, называемое синусным стоком, confluens sinuum . Это расширение соответствует на затылочной кости крестообразному возвышению.

Твердая оболочка головного мозга отделяется от лежащей под ней паутинной оболочки субдуральным пространством, spatium subdurale , представляющим собой капиллярные щели, в которых находится небольшое количество спинномозговой жидкости.

Восстановление баланса твердой мозговой оболочки - связующее звено между миофасциальным растяжением и краниосакральной терапией. В то время, как восстановление баланса является необходимым элементом краниосакральной терапии, оно не всегда является нужным при миофасциальном растяжении. Однако есть случаи, когда невозможно выполнить миофасциальное расслабление обычным путем, и кажется, ничто не может помочь. Ограничения предугадываются больше интуитивно, чем ощущаются. И, несмотря на все растяжения, имеются признаки ограничения.

Есть четыре случая при выполнении миофасциального растяжения, когда необходимо провести восстановление баланса твердой мозговой оболочки:

1. Пациент, лежащий на столе, вполне симметричен, но при вставании выявляется асимметрия;

2. Миофасциальная структура, которая подлежит растягиванию или не реагирует вообще, или поддается очень слабо. Это часто происходит при растяжении длинных мышц, выпрямляющих туловище и мышц живота;

3. Коррекция исчезает, как только ослабится новый захват. Это зачастую происходит при расслаблении мышц, прикрепляющихся к основанию черепа и похоже на эластичный резиновый бинт, тотчас же возвращающийся в свое нерастянутое положение;

4. Руками ощущается, что что-то еще надо было бы растянуть, но врач не в состоянии определить эту структуру. В этих то случаях восстановление баланса покажет, успешно или нет проведено лечение.

Например, я работал с пациентом, который имел хроническую боль в области шеи и в нижнем отделе позвоночника, миофасциальное ограничение в области живота и миофасциальные триггерные точки. Мануальное расслабление триггерных точек было лишь частично успешным (применялась методика рассеянного растяжения).

Мой ассистент и я попытались применить продольное растяжение вдвоем и не смогли расслабить мышцы живота. Они оставались тугими и неэластичными до тех пор, пока не было проведено восстановление баланса твердой мозговой оболочки. Как только это произошло, следом, волнообразно, в течение нескольких секунд произошло расслабление мышц живота и все это сразу после начала продольного растяжения. Нельзя напрямую положить руки на твердую мозговую оболочку и обратной связи нет.

Полного объяснения, как и почему работает данная техника, до сих пор; не существует. По сути дела непонятно, что происходит при этом: восстановление баланса или растяжение твердой мозговой оболочки. Также неясно, какие ограничения снимается при этом. Приняв во внимание эти факты, остальное является (по теории Aplenger) объяснением, что происходит в твердой мозговой оболочке. Является ли это объяснением правильным или нет, неизвестно, тем не менее ясно, что изменения в твердой мозговой оболочке тесно связаны с нормальными физиологическими движениями.



ЭФФЕКТ ПОВЫШЕННОГО НАПРЯЖЕНИЯ В ТВЕРДОЙ
МОЗГОВОЙ ОБОЛОЧКЕ

Apledger считает кости краниального свода самым трудным местом в мембранной системе твердой мозговой оболочке. Поэтому кости черепа, крестец, копчик могут быть использованы как средство воздействия при диагностике и лечении повышенного напряжения.

Apledger считает, что повышенная напряженность в мембранной системе твердой мозговой оболочке - наиболее часто встречающиеся случаи дисфункций, гистологически отражающихся в строении волокон твердой мозговой оболочки, которые в случае повышенной напряженности выстраивается вдоль линии напряжения.

АНАТОМИЯ МЕМБРАННОЙ СИСТЕМЫ ТВЕРДОЙ
МОЗГОВОЙ ОБОЛОЧКИ

Мозг мягкий и желеобразный по консистенции, в то время как консистенция спинальных связок несколько тверже. Оболочки, позвоночный столб и череп вместе с сопутствующими связками защищают центральную нервную систему от механических воздействий. Оболочки состоят из твердой мозговой оболочки, являющейся толстым внешним слоем, более хрупких сосудистой и тонкой. Тонкая оболочка плотно прилегает к головному и спинному мозгу. Тонкая и сосудистая оболочки образуют субарахноидальное пространство, которое заполнено цереброспинальной жидкостью. Твердая мозговая оболочка и цереброспинальная жидкость обеспечивает основную поддержку и защиту головного и спинного мозга. Краниальная твердая мозговая оболочка прикреплена к периосту, выстилая внутреннюю поверхность черепа. Периост внутренней поверхности переходит в периост внешней поверхности черепа на границе с большим затылочным отверстием и отверстиями для нервов и кровеносных сосудов /87/.



Краниальная твердая мозговая оболочка - это прочный слой коллагеновой связующей ткани, пронизанной нервными окончаниями и сосудами. Спинальная твердая мозговая оболочка - это труба, пронизанная корешками спинальных нервов, которая протягивается от большого затылочного отверстия до второго сакрального сегмента. Спинальная твердая мозговая оболочка отделяется от стенки спинального канала эпидуральным пространством, в которой расположены жировые ткани, венозные сплетения и цереброспинальная жидкость. Спинальная твердая мозговая оболочка также сильно иннервирована и содержит много сосудов. Детальное описание можно найти у Вагг и Kiernan /87/. Достаточно сказать, что краниальная и спинальная твердые мозговые оболочки богато иннервированы так, что небольшое искривление твердой мозговой оболочки быстро иррадирует в центральную нервную систему и сопровождается соответствующей мышечной реакцией.


НОРМАЛЬНОЕ ДВИЖЕНИЕ МЕМБРАННОЙ СИСТЕМЫ ТВЕРДОЙ МОЗГОВОЙ ОБОЛОЧКИ

Движения головой и позвоночником вызывает физиологические изменения в натяжении твердой мозговой оболочки, окражающей головной и спинной мозг /88/. Эти изменения происходят из-за пластичной приспосабливаемости нервной ткани, позвоночный столб изменяет длину и форму при нормальных движениях. Твердая мозговая оболочка складывается и растягивается как гармошка между позвонками и это дает возможность свободным движениям нервной ткани.

Если ограничения мягких тканей или костные деформации мешают нормальным движениям твердой мозговой оболочки, то нарушается нормальная подвижность нервной ткани. И наоборот, сокращенная твердая мозговая оболочка допускает существование значительных костных деформаций без травматизации нервных корешков.

Таким образом, и в случае серьезных аномалий могут быть минимальные невралгические изменения, и при минимальных костных изменениях могут быть большие невралгические нарушения.

Есть существенное различие в мобильности передних и задних поверхностей твердой мозговой оболочки цервикального и поясничных отделов, это находит свое отражение в анатомическом строении. Дорзальная твердая мозговая оболочка - неэластичная мембрана, двигается, складываясь в виде гармошки, в то время как передняя часть твердой мозговой оболочки прикреплена к задней поверхности тел позвоночников и фиксирована нервными окончаниями /89-91/.

Когда голова пациента находится в ротации, цервикальный канал сужается, в то время как первый шейный позвонок вместе с твердой мозговой оболочкой смещается латерально. Спинномозговое отверстие при складывании твердой мозговой оболочки становится меньше, так как это происходит с фотокамерой при сужении диафрагмы /88/. Поэтому если твердая мозговая оболочка будет укорочена даже минимальной дисковой протрузией или костной аномалией, то это спровоцирует боль и ее дисфункцию /92/.

У здоровых субъектов флексия головы увеличивает натяжение твердой мозговой оболочки /92/. При максимальном прижатии подбородка пациента к груди, возникает максимальная амплитуда флексии, и на твердую мозговую оболочку будет произведено большее давление. Дорзальная часть твердой мозговой оболочки между затылочными костями и крестцом на 0,5 см длиннее, чем передняя часть. Используя трупы, Brieg сумел показать, что тонкая мозговая оболочка растягивалась и тотчас же передавала полученное напряжение на люмбо-сакральный отдел оболочки, нервные корешки и сакральные окончания, если туловище пациента было прямым и цервикальный позвоночный столб наклонен вперед /90/.

При гиперэкстензии головы протяженность твердой мозговой оболочки уменьшается, вызывая расслабление позвоночных связок, нервных волокон /90/. Передняя поверхность твердой мозговой оболочки расслабляется и образует складки по типу гармонии на уровне дисков. Это дает возможность передней части твердой мозговой оболочки смешаться в позвоночный канал. В то же время ее боковая и задняя поверхность, которая лежит между позвоночными дугами складывается и выступает в позвоночный канал. Так как твердая мозговая оболочка прикреплена к дугам связующей тканью, то внутри канала она не имеет свободы действия /88/. Поэтому во время флексии головы корешки цервикальных нервов перемещаются вверх. Это увеличивает расстояние между нервными корешками и твердой мозговой оболочкой /93/, и, возможно, вызывает компрессии нервных окончаний, если спинномозговые отверстия почему-то оказываются суженными или если твердая мозговая оболочка укорочена. Самая большая возможность для укорочения и удлинения твердой мозговой оболочки лежит в задней части цервикального позвоночного канала.

Латерофлексия головы вызывает складывание твердой мозговой оболочки на вогнутой поверхности и растяжение, и разглаживание на выпуклой. На выпуклой поверхности часто ущемляются нервные окончания, так как они расположены на поверхности вогнутой стороны, приближаясь к позвонкам.

В атлантозатылочном сочленении проходит осевое складывание твердой мозговой оболочки; так же как и в нижних частях шейного и грудного отделов позвоночника при прямой осанке. При ротации головы осевая складка твердой мозговой оболочки углубляется между 1 шейным позвонком и затылком. Чем сильнее ротация, тем дальше на периферии наблюдается этот эффект скалывания твердой мозговой оболочки /78/.

Появление в поясничном отделе лордоза или кифоза приводит к одинаковым движениям твердой мозговой оболочки. При максимальном кифозе Brieg обнаружил, что задний отдел твердой мозговой оболочки растянулся на 2,2 мм /88/. В то время как Charniey определил, что разница протяженности поясничного отдела при флексии и экстензии составляет 5 мм /91/. Если бы это движение распределялось по всей длине поясничных позвонков, тогда каждый корешок спинного мозга имел бы очень малое количество движений. Поэтому когда пациента просят выполнить флексию (опрокидывание) таза, происходит вытяжение и удлинение задней части дуральной трубки. Если затем пациента просят поднять голову, твердая мозговая оболочка оказывается максимально растянута, передавая напряжение от крестца до затылка и наоборот.

БОЛЬ КАК ПРИЗНАК УКОРОЧЕНИЯ ТВЕРДОЙ
МОЗГОВОЙ ОБОЛОЧКИ

Боль от твердой мозговой оболочки ощущается локально, соответственно анатомическим ограничениям. Таким образом, поражение цервикального участка может вызвать распространяющуюся боль от середины шеи к лопатке и виску, и лбу, и в глубину глаз. Полная локализованность боли соответствует наличию двенадцати дерматомов в теле человека, и в соответствии с иррадиацией боли по синувертеральным нервам /96/.

Независимо от зоны ограничения твердой мозговой оболочки боль провоцируется кашлем, имитируя провокацию грыжи диска.

ДИАГНОСТИКА УКОРОЧЕНИЯ ТВЕРДОЙ МОЗГОВОЙ ОБОЛОЧКИ

Пациенты с пониженным мышечным тонусом часто принимают "эмбриональную" позу в статике. Maitland (12) часто использует этот тест как признак укорочения твердой мозговой оболочки, и называют его как тест на неустойчивость статики. Избыточное давление, оказываемое на позвоночник, вызывает его ротацию. Растяжение твердой мозговой оболочки сопровождается выпрямлением коленных суставов, исчезновением дорзальной флексии спины. Часто укорочение твердой мозговой оболочки сопровождается ишемическим проявлением боли.

Тракция ног пациента вызывает растяжение твердой мозговой оболочки с уровня LIY. Особенно часто укорочение твердой мозговой оболочки встречается в тех случаях, когда флексия шейного отдела вызывает боли в поясничном отделе позвоночника или когда при тракции пациента за ноги вызывает флексию тела. Cyriax и Maitland производили лечение с помощью манипуляций на позвоночнике, в то время как Barnes и Upledger использовали технику расслабления твердой мозговой оболочки.

РАССЛАБЛЕНИЕ ТВЕРДОЙ МОЗГОВОЙ ОБОЛОЧКИ ОДНИМ ВРАЧОМ

Пациент ложится на бок, голова флексирована, бедренные и коленные суставы согнуты так, чтобы туловище и ноги были в положении эмбриона, голова - нейтрально. Пациент лежит на боку (рис. 112), под головой подушка. Необходимо сесть на стул рядом с кушеткой посередине расстояния между ягодицами и головой, положить руку на затылок, охватив ее ладонью, в то время как пальцы легко и свободно лежат сзади на голове. Другая рука расположена на крестце так, что основание ладони фиксирует основание крестца (рис. 113-114). Необходимо одновременно мягко флексировать голову и экстензировать крестец (рис. 115). Задержаться, пока не почувствуется расслабление и появится самопроизвольное движение. Пусть руки врача следует за этим движением, пока не последует остановка. Необходимо снова мягко "надавить" на затылок и крестец и ослабить давление, имитируя качающиеся движения (рис. 116), следуя в появившемся режиме за расслаблением и его остановкой. Результат будет достигнут, если ритм станет регулярный, расслабление - полное.

Рис. 113. Положение руки на голове для коррекции дисбаланса твердой мозговой оболочки. Основание черепа фиксировано ладонью врача, а пальцы мягко лежат на задней части головы.

Рис. 114. Положение руки на крестце для коррекции дисбаланса твердой мозговой оболочки. Край ладони плотно прижат к крестцу, а пальцы плотно, но легко соприкасаются к ягодицам.

НИКОГДА не останавливайте пациента, если его ритм нерегулярный. Если крестец и затылок не совершают качательные движения в синхронном ритме, важно повторить процедуру, пока ритм не будет симметричным. Закончив восстановление баланса твердой мозговой оболочки, важно снова вернуться к неэффективным приемам, которые использовались до этого безуспешно.

Если пациент не способен занять удобное положение на банд, данная процедура может быть проведена у пациента, лежащего на животе (рис.117), хотя в таком положении невозможно провести пассивное максимальное расслабление. Положение "сидя" также возможно (рис. 118), хотя крестец в таком положении фиксирован.

Рис. 115. Коррекция дисбаланса твердой мозговой оболочки в положении
лежа на боку А – положение рук на скелете, приложенном к телу пациента.

В – мягкое смещение головы и крестца вперед после предварительного растяжения твердой мозговой оболочки, затем можно следовать за ответным движением тканей, пока оно не остановится, а потом не возобновится ритмичное колебание.

Рис. 116. Мягкое смещение головы и крестца навстречу друг другу, при появлении ритмичного движения необходимо последовать за движением тканей, пока оно не остановиться, а потом не возобновится ритмичное колебание.

Рис. 117. Коррекция дисбаланса твердой мозговой оболочки.
Пациент лежит на животе.

Рис. 118. Коррекция дисбаланса твердой мозговой оболочки.

Рис. 119. Коррекция дисбаланса твердой мозговой оболочки двумя врачами. Положение пациента на спине, ноги флексированы.

РАССЛАБЛЕНИЕ ТВЕРДОЙ МОЗГОВОЙ ОБОЛОЧКИ С ПОМОЩЬЮ ДВУХ ВРАЧЕЙ

Расслабление двумя специалистами может быть направлено на твердую мозговую оболочку или мышцы тазового дна и входа в грудную клетку отдельно и одновременно. Пациент лежит на спине, ноги флексированы в суставах (рис. 119). Перед проведением процедуры больной приподнимает таз так, что можно руку провести между ног, и флексироватъ дорзальную поверхность крестца. Пальцы врача полусогнуты и прилежат к основанию крестца (рис.120). Пациент опускает таз на кушетку, и врач производит тракцию за область крестца. Далее пациент выпрямляет ноги, пока руки врача опирается на локоть и проводит дополнительную тракцию, смещая свое тело дорзально (рис. 121). Вторая рука, расположенная над лонным сочленением, совершает его смещение в каудо-краниальном направлении, добиваясь расслабления мышц тазового дна (рис. 122). Второй ассистент одновременно проводит мягкую цервикальную тракцию (рис. 37-40). Врач, осуществляющий большую мобильность, стоит у изголовья пациента. Любая из заранее описанных тракции задней цервикальной мускулатуре может быть использована. Одновременно можно проводить расслабление мышц входа в грудную клетку (рис. 123).

Рис. 120. Коррекция дисбаланса твердой мозговой оболочки двумя врачами

А – Положение пациента на спине, таз поднят. Врач проводит руку между ног пациента и флексирует крестец.

В – Коррекция дисбаланса твердой мозговой оболочки.

С – Положение руки на крестце.

Д – Положение руки на скелете, приложенном к пациенту.

Рис. 121. Техника восстановления баланса твердой мозговой оболочки. Положение врача и пациента для проведения тракционного воздействия на крестец во время восстановления баланса твердой мозговой оболочки.

Рис. 122. Техника восстановления баланса твердой мозговой оболочки. Положение 2-х врачей и пациента перед началом процедуры. Выполнение расслабления тазового дна.

Рис. 123. Техника восстановления баланса твердой мозговой оболочки. Выполнение техники расслабления тазового дна и входа в грудную клетку.

ВИЗУАЛЬНАЯ ДИАГНОСТИКА

Когда речь заходит о миофасциальном лечении, врач, наряду с обычной оценкой для диагноза должен провести детальный осмотр осанки. Проводя этот осмотр, врач должен быть настороже к тем сигналам и симптомам, которые не соответствуют обычной картине этого диагноза. Осмотр никогда не завершает, а постоянно предшествует проведению лечения.

Так как миофасцнильная тракция отражается на изменениях в осанке, этот осмотр должен быть очень детальным с тем, чтобы записать эти изменения в своих клинических заметках, докладах врачу, страховым компаниям, юристам и, что самое важное, для Ваших разговоров с больным. Больной зачастую не может оценить достаточно четко свои изменения, особенно на начальной стадии своего лечения, когда эти изменения так малы, что нетренированный глаз их не скоро заметит. В этих случаях Ваша документация очень полезна. И основная причина для документации, конечно, то, что позволяет определить, идут ли изменения в нужном направлении.

Когда изменяется осанка, центральная нервная система переучивается на новые ощущения, которые идут от повышения уровня координации. Это первоначально вызывает конфликт между той статикой, к которой нервная система адаптирована и статикой, формирующейся заново с координацией, которую нервная система воспринимает относительно предыдущей как неверную. Этот конфликт сопровождается временно снизившейся стабильностью, что может принести больному чувство дискомфорта и увеличение боли. Если это случится, необходимо показать больному изменения в его осанке. Это даст Вам возможность уверить его, что изменения происходят к лучшему и, как только тело приспособится, он почувствует улучшение.

Письменные описания могут сбить с толку больного. Поэтому обычно для взаимной выгоды и больного, и своей собственной, я всегда делаю фотографии при первом посещении и позднее. Я делаю снимки всех четырех положении осанки. По возможности, пациент должен иметь минимум одежды. И эти фотографии и негативы хранятся в личном деле пациента. Фотографии продатированы, пронумерованы и имеют пометки-до или после лечения они сделаны.

Качественная оценка осанки затруднительна, так как Вам не хочется стоять близко к пациенту с линейкой, гониометром, отвесом в реках. Достаточно оценить периодически на глаз. Стандартный круг измерений движений также должен быть частью общего осмотра Формы оценки (их можно найти в приложении) дают широкий обзор приемов, которые используются. Иногда, в зависимости от жалоб пациента, чуть больше или меньше деталей требуется для осмотра и оценки. Если Вы выбираете фотокопии и используете следующие формы, удостоверьтесь, что установили степень отклонения, если, например, одно плечо больного выше другого.

Одно преимущество бланка-схемы оценки в том, что, как минимум, все его пункты можно оценивать периодически. Таким образом, изменения по каждому пункту могут быть отмечены, записаны и сообщены лечащему врачу, страховой компании или адвокату. Все врачи хорошо знают, как трудно сидеть и постоянно писать объяснения и рапорты и выискивать несоответствия в применении специфических средств. Утомительная работа сводится к минимуму при использовании оценочных бланков-схем. Я также использую программы (flow), составленные компьютером, чтобы ускорить описания изменений. После каждого осмотра изменения вносятся в карту (flow-sheet). Когда она заполнится, это все отпечатывается и заносится в историю болезни пациента, где отмечается прогресс в состоянии (progress letter). Таким образом, врач всегда в курсе изменении и улучшений состояния пациента.

При первом посещений основное внимание уделяется опросу пациента, из анамнеза уточняется как можно больше деталей. Разговор записывается на магнитофон. Иногда я записываю все на магнитофон, то потом переписываю и храню как часть медицинской карты. Если начальное повреждение произошло в результате несчастного случая, этот рассказ может быть важной помощью при определении, какие суставы имели тракции, компрессии или были перерастянуты. Начальное лечение должно быть направлено именно на эти суставы, пока обратная "миофасциальная связь не начнет руководить лечением".

Анамнез помещают в конце карты. Необходимо найти возможность выслушать пациента по той простой причине, что пациенту нужно это кому-то рассказать и это служит установлением взаимопонимания между ними. Для начала лечения мне более важна оценка осанки, чем рассказ самого пациента. Однако, если лечение должно включать сомато - эмоциональное расслабление, эта побочная информация помогает мне оценить, какие физиологические движения могут произойти.

Второй частью первого визита является оценка осанки. Она производится только визуально, без рук. Пациента фотографируют в начале осмотра, когда пациент старается удержать свою наилучшую осанку. Затем, во время лечения, когда появляются изменения в осанке при расслаблении. Основные изменения наиболее вероятны при наличии вращения туловища.

Диктовка служит трем целям. Первое-скорость. Второе-секретарь слушает диктовку, заполняет формы записывает комментарии врача. Нет нужды говорить, что заполнение форм компьютером наиболее эффективный метод, но и фотокопии хороши. Третье, во время диктовки пациент, слыша мои различные замечания, обращает больше внимания на свою осанку. И потом, взглянув в зеркало, он также может заметить изменения. Это превращает его из пассивного субъекта в соучастника. Зачастую это превращается в игру: "Я первый это увидел", - когда больной горит желанием первым заметить и рассказать об изменениях в осанке.

Для оценки осанки попросите больного стать спиной к стене так, чтобы ноги были от стенки в нескольких см. Особой разницы в расстоянии нет. Больной, имеющий проблемы с равновесием, пространственной ориентацией, встанет ближе к стене и даже постарается прислониться. Можно попросить пациента отодвинуться от стены и молча записать свои наблюдения. Позднее Вы поймете, почему пациент стоит таким образом. Может быть, он просто неправильно понял указания. Важно стараться смотреть в лицо пациенту и не говорить за его спиной. Попросите пациента сфокусировать зрение на точке над Вашей головой. Я всегда стараюсь сидеть во время осмотра, дабы пациент не тянул голову, чтобы посмотреть над головой. Я предпочитаю производить оценку, когда пациент снимет очки. Так более четко видны глаза. Это также дает возможность спровоцировать нарушения координации, так как она может быть скомпенсирована зрением. Если невозможно снять очки потому, что это вызывает стресс или расстройство равновесия, то попросите его сдвинуть их хотя бы на момент осмотра его спереди. Прежде чем начать диктовать, попросите пациента убрать волосы с ушей и с шеи. Не нужно, чтобы он поддерживал волосы рукой так как это изменяет осанку.

При завершении осмотра, если ноги пациента не стоят параллельно, а туловище ротировано, необходимо попросить его стать лицом к Вам, ноги установить параллельно. Важно встать ближе к пациенту, потому что многие пациенты теряют равновесие, когда их просят об этом. Если это не вызывает потерю равновесия Вы можете отодвинуться и вновь провести визуальный осмотр. При параллельно стоящих ногах может увеличиваться ротация плечевого пояса. Не оставляйте пациента долго в таком положении, так как дискомфорт может вызвать раздражение пациента.

Закончив оценку осанки, можно провести диагностику подвижности кожи, пока пациент стоит. Подвижность кожи пациента можно оценить также у стоящего и сидящего пациента. Во время такого осмотра следует прощупать рубцы на предмет ограничений.

У стоящего пациента вслед за оценкой мобильности кожи следует проверить подвижность позвоночника и крестцово-подвздошного сочленения /98/. Прежде чем приступить к пальпации, необходимо визуально оценить движение. Качество движения является наиболее важным аспектом. Необходимо ответить симметричность и асимметричность движения. В основном при симметричном движении есть возможность улучшить компенсацию в более короткие сроки. Очень редко существует симметрия при патологии. Пациент зачастую производит движения без участия тех позвоночных двигательных сегментов, в которых пациент чувствует боль. Если оценивается только количество движений, то упускается основная часть информации. Неподвижность и гипермобильность могут быть локализованы на позвонковом уровне.

Многие врачи обычно легко производят диагностику подвижности поясничного отдела позвоночника и зачастую забывают производить ту же процедуру на грудном и шейном уровне. Необходимо оценить подвижность крестцово-подвздошных сочленений и поясничных двигательных сегментов в положении пациента сидя с целью диагностики влияния укорочения мышц на подвижность таза. Процесс оценки - это систематический подход, который даст возможность установить ограничения миофасциальных структур и начать лечение.

Миофасциальные ограничения, выявленные таким образом, являются наиболее выраженными и поверхностными, если судить по их воздействии на тело в целом. То, что выявлено при первичном осмотре, может и не быть основным ограничением. Тело-это единая кинематическая цепь. Изменения в подвижности какой-то части тела влечет за собой изменения подвижности других частей, асимметричная осанка любой части тела ведет к асимметрию других его частей.

Наиболее драматичным примером влияния асимметрии одной части тела на другие являются пациенты с периферическим параличом при повреждении периферического нерва в результате заболевания или несчастного случая. По сути дела миофасциальное растяжение - самый безопасный метод при периферическом параличе, так как обратная связь с пациентом не даст возможность перерастянуть и, таким образом, сохранить защитное напряжение тканей.

Когда будет выполнена оценка в положении сидя и стоя, важно начать проводить оценку длины ног из наиболее удобного положения. Многие различия в длине мог, относящиеся еще к детству, можно исправить, используя миофасциальное растяжение. Анатомические изменения не могут быть исправлена, но возможно изменить реакцию мягких тканей.

ЗАКЛЮЧЕНИЕ

Этот справочник является только введением в теорию миофасциального расслабления. Ключом к миофасциальному расслаблению является чувствительность рук врача. Единственный путь развития этого навыка проводить диагностику руками как можно большего количества больных, чтобы почувствовать мягкие ткани и их реакции. Затем Вы должны научиться доверять ощущениям своих рук и отвечать на это. Дайте возможность пациенту руководить Вами. Важно научиться расслабляться, почувствовать себя комфортно.

ПРИЛОЖЕНИЕ

СХЕМА ОСМОТРА ВИЗУАЛЬНЫЙ ОСМОТР И ОЦЕНКА ОСАНКИ

Мозг покрыт тремя оболочками, из которых самой наружной является твердая мозговая оболочка (dura mater encephali). Она состоит из двух листков, между которыми заложен тонкий слой рыхлой клетчатки. Благодаря этому один лепесток оболочки может быть легко отделен от другого и использован для замещения дефекта твердой мозговой оболочки (способ Бурденко).

На своде черепа твердая мозговая оболочка связана с костями рыхло и легко отслаивается, между ней и костью сохраняется так называемое эпидуральное пространство. На основании черепа твердая мозговая оболочка плотно сращена с костями, что объясняет, например, появление ликвореи из носа или ушей при переломах костей в области передней или средней черепных ямок. Внутренняя поверхность самих костей свода черепа выстлана соединительнотканной пленкой, которая содержит слой клеток, напоминающих эндотелий; между ним и аналогичным слоем клеток, покрывающих наружную поверхность твердой мозговой оболочки, образуется щелевидное эпидуральное пространство. На основании черепа dura mater соединена с костями очень прочно, особенно на продырявленной пластинке решетчатой кости, в окружности турецкого седла, на скате, в области пирамид височных костей.

Соответственно срединной линии свода черепа или несколько справа от нее располагается верхний серповидный отросток твердой мозговой оболочки (falx cerebri). отделяющий одно большое полушарие мозга от другого. Он тянется в сагиттальном направлении от crista galli до protuberantia occipitalis interna.

Нижний свободный край мозгового серпа почти достигает мозолистого тела (corpus callosum). В заднем отделе мозговой серп соединяется с другим отростком твердой мозговой оболочки -- крышей, или палаткой, мозжечка (tentorium cerebelli), который отделяет мозжечок от больших полушарий мозга. Этот отросток твердой мозговой оболочки расположен почти горизонтально, образуя некоторое подобие свода, и прикрепляется сзади -- на затылочной кости (вдоль ее поперечных борозд), с боков -- на верхнем крае пирамиды той и другой височной кости, спереди -- на processus clinoidei клиновидной кости.

На большей части протяжения задней черепной ямки палатка мозжечка отделяет содержимое ямки от остальной полости черепа, и только в переднем отделе tentorium имеется овальной формы отверстие -- incisura tentorii (иначе -- пахионо-во отверстие), через которое проходит стволовая часть головного мозга. Своей верхней поверхностью tentorium cerebelli соединяется по срединной линии с falx cerebelii, а от нижней поверхности палатки мозжечка, тоже по срединной линии, отходит незначительный по высоте falx cerebelli, проникающий в борозду между полушариями мозжечка.

Пазухи твердой мозговой оболочки.

В толще отростков твердой мозговой оболочки находятся лишенные клапанов венозные пазухи. Серповидный отросток dura mater на всем своем протяжении содержит верхнюю сагиттальную венозную пазуху (sinus sagittalis superior), которая прилежит к костям свода черепа и при травмах его нередко повреждается и дает очень сильное, трудно останавливаемое кровотечение. Наружная проекция верхней сагиттальной пазухи соответствует сагиттальной линии, соединяющей основание носа с наружным затылочным бугром.

Нижний сводный край мозгового серпа содержит нижнюю сагиттальную пазуху (sinus sagittalis inferior). По линии соединения мозгового серпа и палатки мозжечка находится прямая пазуха (sinus rectus), в которую впадает нижняя сагиттальная пазуха, а также большая вена мозга (Галена).

В толще серпа мозжечка, по линии прикрепления его к внутреннему затылочному гребешку, содержится затылочная пазуха (sinusoccipitalis).

Ряд венозных пазух находится на основании черепа. В средней черепной ямке имеется пещеристая пазуха (sinus cavernosus). Эта парная пазуха, располагающаяся по обе стороны турецкого седла, правая и левая пазухи соединяются анастомозами (межпещеристые пазухи, sinus intercavemosi), образуя кольцевидную пазуху Ридлея -- sinus circularis (Ridleyi). Пещеристая пазуха собирает кровь из мелких пазух переднего отдела полости черепа; кроме того, что особенно важно, в нее впадают глазничные вены (vv. ophthalmicae), из которых верхняя анастомозирует с v. angularis у внутреннего угла глаза. Посредством эмиссариев пещеристая пазуха непосредственно связана с глубоким венозным сплетением на лице -- plexus pterygoideus.

Внутри пещеристой пазухи проходят a. carotis interna и п. abducens, а в толще твердой мозговой оболочки, образующей наружную стенку пазухи, проходят (считая сверху вниз) нервы -- nn. oculomotorius, trochlearis и ophthalmicus. К наружной стенке пазухи, в ее заднем отделе, прилегает полулунный узел тройничного нерва.

Поперечная пазуха (sinus transversus) располагается вдоль одноименной борозды (по линии прикрепления tentorium cerebelli) и продолжается в сигмовидную (или S-образную) пазуху (sinus sigmoideus), расположенную на внутренней поверхности сосцевидной части височной кости до яремного отверстия, где переходит в верхнюю луковицу внутренней яремной вены. Проекция поперечной пазухи отвечает линии, образующей легкую выпуклость кверху и соединяющей наружный затылочный бугор с верхнезадней частью сосцевидного отростка. Этой проекционной линии примерно соответствует и верхняя выйная линия.

Верхняя сагиттальная, прямая, затылочная и обе поперечные пазухи в области внутреннего затылочного бугра сливаются, это слияние называется confluens sinu-um. Наружной проекцией места слияния сагиттальная пазуха не сливается с другими пазухами, а переходит непосредственно в правую поперечную.