Каким образом различные вещества попадают в клетку. Для начала уточним, где вырабатывается коллаген и эластин и зачем они нужны коже. Кроме коллагеновых и эластиновых волокон, в дерме находятся клетки-фибробласты и вещества гликозаминогликаны. Что они дел


"Введение в общую биологию и экологию. 9 класс". А.А. Каменский (гдз)

Характеристика клетки. Клеточная мембрана

Вопрос 1. Каковы функции наружной мембраны клетки?
Наружная клеточная мембрана состоит из двойного липидного слоя и молекул белков, часть которых расположена на поверхности, а некоторые пронизывают оба слоя липидов насквозь. Функции плазматической мембраны:
1. Отграничивающая. Плазматические мембраны образуют замкнутые системы, нигде не прерываясь, т.е. они ни имеют свободных концов, таким образом, они отделяют внутреннее содержимое от окружающей среды. Например, оболочка клетки защищает содержимое цитоплазмы от физических и химических повреждений.
2. Транспортная – одна из важнейших функций связана со способностью мембраны пропускать в клетку или из нее различные вещества, это необходимо для поддержания постоянства ее состава, т.е. гомеостаза (греч. homos – подобный и stasis – состояние).
3. Контактная. В составе тканей и органов между клетками образуются сложные специальные структуры – межклеточные контакты.
4. Плазматическая мембрана многих клеток может образовывать специальные структуры (микроворсинки, реснички, жгутики).
5. На плазматической мембране создается разность электрических потенциалов. Например, гликопротеины эритроцитов млекопитающих создают отрицательный заряд на их поверхности, это препятствует их агглютинации (склеиванию).
6. Рецепторная. Обеспечивается молекулами интегральных белков, имеющих снаружи полисахаридные концы. В мембранах имеется большое число рецепторов - специальных белков, роль которых заключается в передаче сигналов извне внутрь клетки. Гликопротеины участвуют в распознавании отдельных факторов внешней среды и в ответной реакции клеток на эти факторы. Например, яйцеклетка и сперматозоид узнают друг друга по гликопротеинам, которые подходят друг к другу как отдельные элементы цельной структуры (стереохимическая связь по типу «ключ к замку») – это этап, предшествующий оплодотворению.
7. Плазматическая мембрана может участвовать в синтезе и катализе. Мембрана является основой для точного размещения ферментов. В слое гликокаликса могут осаждаться гидролитические ферменты, которые расщепляют различные биополимеры и органические молекулы, осуществляя примембранное или внеклеточное расщепление. Так идет внеклеточное расщепление у гетеротрофных бактерий и грибов. У млекопитающих, например, в кишечном эпителии, в зоне щеточной каемки всасывающего эпителия, обнаруживается большое количество разнообразных ферментов (амилаза, липаза, различные протеиназы, экзогидролазы и др.), т.е. осуществляется пристеночное пищеварение.

Вопрос 2. Какими способами различные вещества могут проникать внутрь клетки?
Сквозь наружную клеточную мембрану вещества могут проникать несколькими способами. Во-первых, через тончайшие каналы, Образованные молекулами белков, могут проходить внутрь клетки ионы веществ, имеющие небольшие размеры, например ионы натрия, калия, кальция. Это так называемый Пассивный транспорт идет без затрат энергии путем диффузии, осмоса и облегченной диффузии. Во-вторых, в клетку могут попасть вещества путем фагоцитоза или пиноцитоза. Крупные молекулы биополимеров поступают через мембрану благодаря фагоцитозу, явлению, впервые описанному И.И. Мечниковым. Процесс захвата и поглощения капелек жидкости происходит путем пиноцитоза. Путем фагоцитоза и пиноцитоза обычно в клетку проникают пищевые частицы.

Вопрос 3. Чем пиноцитоз отличается от фагоцитоза?
Фагоцитоз (греч. рhagos – пожирать, cytos – вместилище) – это захват и поглощение клеткой крупных частиц (иногда целых клеток и их частиц). При этом плазматическая мембрана образует выросты, окружает частицы и в виде вакуолей перемещает их внутрь клетки. Этот процесс связан с затратами мембраны и энергии АТФ.
Пиноцитоз(греч. pino – пить) – поглощение капелек жидкости с растворенными в ней веществами. Осуществляется за счет образования впячиваний на мембране и формирования пузырьков, окруженных мембраной, и перемещения их внутрь. Этот процесс также связан с затратами мембраны и энергии АТФ. Всасывающая функция эпителия кишечника обеспечивается путем пиноцитоза.
Таким образом, при фагоцитозе клетка поглощает твёрдые частички пищи, а при пиноцитозе – капельки жидкости. Если клетка перестает синтезировать АТФ, то процессы пино- и фагоцитоза полностью прекращаются.

Вопрос 4. Почему у растительных клеток нет фагоцитоза?
При фагоцитозе в том месте, где пищевая частица прикасается к наружной мембране клетки, образуется впячивание, и частица попадает внутрь клетки, окруженная мембраной. У растительной клетки поверх клеточной мембраны имеется плотная непластичная оболочка из клетчатки, что препятствует фагоцитозу.

Вопрос 1. Каковы функции наружной мембраны клетки?

Наружная клеточная мембрана состоит из двойного липидного слоя и молекул белков, часть которых расположена на поверхности, а некоторые пронизывают оба слоя липидов насквозь.

Наружная клеточная мембрана выполняет защитную функцию, отделяя клетку от внешней среды, препятствует повреждению ее содержимого.

Кроме того, наружная клеточная мембрана обеспечивает транспорт веществ внутрь клетки и из нее, позволяет клеткам взаимодействовать между собой.

Вопрос 2. Какими способами различные вещества могут проникать внутрь клетки?

Сквозь наружную клеточную мембрану вещества могут проникать несколькими способами.

Во-первых, через тончайшие каналы, образованные молекулами белков, могут проходить внутрь клетки ионы веществ, имеющие небольшие размеры, например ионы натрия, калия, кальция.

Во-вторых, в клетку могут попасть вещества путем фагоцитоза или пиноцитоза. Таким путем обычно проникают пищевые частицы.

Вопрос 3. Чем пиноцитоз отличается от фагоцитоза?

При пиноцитозе выпячивание наружной мембраны захватывает капельки жидкости, а при фагоцитозе - твердые частицы.

Вопрос 4. Почему у растительных клеток нет фагоцитоза?

При фагоцитозе в том месте, где пищевая частица прикасается к наружной мембране клетки, образуется впячивание, и частица попадает внутрь клетки, окруженная мембраной. У растительной клетки поверх клеточной мембраны имеется плотная непластичная оболочка из клетчатки, что препятствует фагоцитозу.

Как скачать бесплатное сочинение? . И ссылка на это сочинение; Общие сведения о клетках. Клеточная мембрана уже в твоих закладках.
Дополнительные сочинения по данной теме


    Тест по биологии в 7 классе по теме «Клетка животных» составлен по учебнику В. М. Костантинов, В. Г. Бабенко, В. С. Кучменко Тест составила: Емельянова Галина Кирилловна, учитель биологии МБОУ СОШ № 2 п. Гигант Сальского района Ростовской области Соотнесите название органоида клетки животных с их функциями. А Б В Г Д 4 3 1 4 2 А, В, Г, Е Цитология – это наука о клетке, ее строении,
    Вопрос 1. Каковы отличия в строении эукариотической и прокариотической клеток? У прокариот нет настоящего оформленного ядра (греч. karyon - ядро). Их ДНК представляет собой одну кольцевую молекулу, свободно располагающуюся в цитоплазме и не окруженную мембраной. У прокариотических клеток отсутствуют пластиды, митохондрии, эндоплазматическая сеть, аппарат Гольджи, Лизосомы. Рибосомы есть как у прокариот, так и у эукариот (у ядерных - более крупные). Жгутик прокариотической клетки тоньше и работает по иному принципу, чем жгутик
    Вопрос 1. Каковы функции ядра клетки? В ядре содержится вся информация о процессах жизнедеятельности, росте и развитии клетки. Эта информация хранится в ядре в виде молекул ДНК, входящих в состав хромосом. Поэтому ядро координирует и регулирует синтез белка, а следовательно, все процессы обмена веществ и энергии, протекающие в клетке. Вопрос 2. Какие организмы относятся к прокариотам? Прокариоты - это организмы, клетки которых не имеют оформленного ядра. К ним относят бактерии, синезеленые водоросли (цианобактерии)
    Вопрос 1. Чем образованы стенки эндоплазматической сети и комплекса Гольджи? Стенки эндоплазматической сети и комплекса Гольджи образованы однослойной мембраной. Вопрос 2. Назовите функции эндоплазматической сети. Эндоплазматическая сеть (ЭПС) образует транспортную систему клетки. На гладкой ЭПС осуществляется синтез жиров и углеводов. На шероховатой (гранулярной) ЭПС происходит синтез белков за счет работы рибосом, прикрепленных к мембранам ЭПС. Вопрос 3. Какую функцию выполняют рибосомы? Основная функция рибосом - синтез белка. Вопрос 4. Почему большинство рибосом расположены на каналах эндоплазматической
    МУНИЦИПАЛЬНОЕ КАЗЕННОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ Орешковская основная общеобразовательная школа П. Орешково Луховицкого Район Московской Области Конспект урока по биологии В 9 классе «Строение ядра. Хромосомный набор клетки.» учитель биологии Афанасьева Татьяна Викторовна п. Орешково 2015 г. Тема урока: ЯДРО КЛЕТКИ. ХРОМОСОМНЫЙ НАБОР КЛЕТКИ. ЗАДАЧИ УРОКА: 1. сформировать понятие и строении и функциях клеточного ядра. 2. представление о ядрышке и роли его в клетке. 3. Познакомить с хромосомным набором клетки. Оборудование: мультимедийная презентация «Строение ядра»; карточки: «Сравнение процессов пиноцитоза и фагоцитоза», «Работа с определениями»; учебник
    Тест: «Прокариотическая клетка» 1. Назовите структурный компонент клетки, который имеется и у прокариот, и у эукариот: А) лизосома; Г) эндоплазматическая сеть; Б) аппарат Гольджи; Д) митохондрии. В) наружная плазматическая мембрана; 2. Назовите систематическую группу организмов, представители которой не имеют наружной плазматической мембраны: А) прокариоты; В) эукариоты. Б) вирусы; 3. Определите признак, по которому все ниже перечисленные организмы, кроме одного, объединены в одну группу. Укажите «лишний» среди них организм: А) дизентерийная амеба; Г) холерный вибрион; Б) спирохета; Д) стафилококк. В) кишечная палочка; 4.
  • Популярные эссе

      8 Клас Тема 1. 1. Які мегоди дослідження використовуються в учбових закладах? а) довідниковий; б) експедиційний; вдрадиційний; г) аеро та

      Професійна підготовка майбутніх учителів історії перебуває у стані концептуального переосмислення. Місце соціально-гуманітарних дисциплін (у тому числі - історії) у системі

      На сцену під музичний супровід виходять учасники агітбригади. Учень 1. Хоч іноді, хоч раз в житті На самоті з природою

      Мой любимый день недели, как это ни странно, - четверг. В этот день я хожу со своими подругами в бассейн.

По-видимому, одни вещества пассивно протекают через клеточную мембрану под действием разности давлений, другие довольно активно накачиваются в клетку сквозь мембрану, а третьи втягиваются в клетку благодаря впячиванию мембраны внутрь.

Большая часть клеток живет в среде, неподходящей для того, чтобы поддерживать то чрезвычайно строгое соотношение воды, солей и органических веществ, без которого невозможна жизнь. Это влечет за собой необходимость непрерывного и весьма тщательного регулирования обмена различными веществами, который происходит между внешним миром и цитоплазмой. Преградой, отделяющей внутреннее содержимое клетки от окружающей среды, служит клеточная мембрана - тончайшая пленка, толщиной всего лишь в десять миллионных миллиметра.

Эта мембрана проницаема для многих веществ, поток которых идет в обоих направлениях (т. е. из клетки и в клетку). Несмотря на свою ничтожную толщину, мембрана имеет определенную структуру; эта структура и химический состав мембраны, о которых мы имеем еще весьма смутное представление, обусловливают ее избирательную и весьма неравномерную проницаемость. Если силы, обеспечивающие прохождение веществ сквозь мембрану, локализованы в среде, окружающей клетку, то говорят о «пассивном переносе». Если же затрачиваемая на это энергия вырабатывается в самой клетке в процессе ее метаболизма, то говорят об «активном переносе». Такое взаимодействие между клеткой и ее средой служит не только для того, чтобы концентрация в клетке всех веществ, входящих в ее состав, все время удерживалась в известных пределах, вне которых не может быть жизни; в некоторых клетках, например, в нервных клетках, это взаимодействие имеет первостепенное значение для выполнения той функции, которую эти клетки несут в организме.

Многие клетки поглощают необходимые им вещества также путем своего рода заглатывания. Этот процесс известен под названием фагоцитоза или пиноцитоза (слова происходят от греческих слов «есть» и «пить», соответственно, и от слова «клетка»). При таком способе поглощения клеточная мембрана образует карманы или впячивания, которые втягивают вещества извне внутрь клетки; затем эти впячивания отшнуровываются и окруженная мембраной капелька внешней среды в виде пузырька или вакуоли пускается плавать по цитоплазме.

Несмотря на все сходство этого процесса с простым «заглатыванием», мы не вправе еще говорить о поступлении веществ внутрь клетки, поскольку это немедленно влечет за собой вопрос о том, что же означает выражение «внутрь». Со своей, так сказать макроскопической, человеческой, точки зрения, мы склонны легкомысленно утверждать, что как только мы проглотили кусочек пищи, так он и попал к нам внутрь. Однако подобное утверждение не совсем правильно. Внутренность пищеварительного тракта в топологическом смысле представляет собой наружную поверхность; подлинное поглощение пищи начинается лишь тогда, когда она проникает в клетки стенки кишечника. Поэтому и вещество, попавшее в клетку в результате пиноцитоза или фагоцитоза, все еще находится «вовне», поскольку оно еще остается окруженным захватившей его мембраной. Для того чтобы действительно войти в клетку и превратиться в доступный метаболическим процессам компонент цитоплазмы, подобные вещества должны тем или иным способом проникнуть сквозь мембрану.

Одна из сил, оказывающих действие на всю клеточную мембрану, обусловлена градиентом концентрации. Эта сила возникает благодаря беспорядочному движению частиц, стремящихся равномерно распределиться в пространстве. Если два раствора одинакового состава, но разной концентрации приходят в соприкосновение, то начинается диффузия растворенного вещества из области более высокой концентрации, и эта диффузия продолжается до тех пор, пока концентрация не станет повсюду одинаковой. Уравнивание концентраций происходит даже в том случае, если два раствора разделены мембраной, при условии, разумеется, что мембрана проницаема для растворенного вещества. Если мембрана проницаема для растворителя, но непроницаема для растворенного вещества, то градиент концентрации предстает перед нами в виде хорошо знакомого нам явления осмоса: в этом случае растворитель проходит сквозь мембрану, направляясь из области более низкой концентрации растворенного вещества в область более высокой его концентрации. Градиент концентраций и осмотические силы, действующие по обе стороны клеточной мембраны, весьма значительны, так как концентрации многих веществ в клетке резко отличаются от их концентраций во внешней среде.

При пассивном переносе проникновение веществ через мембрану регулируется избирательной проницаемостью мембраны. Проницаемость мембраны для данной молекулы зависит от химического состава и свойств этой молекулы, а также от ее размеров; при этом мембрана способна не только преграждать путь некоторым веществам, но и пропускать сквозь себя разные вещества с различной скоростью.

В зависимости от характера среды, к которой они приспособлены, клетки разных типов обладают весьма неодинаковой проницаемостью. Так, например, проницаемость обыкновенной амебы и эритроцитов человека для воды различается более чем в 100 раз. В таблице констант проницаемости (выражаемых числом кубических микронов воды, проходящих сквозь 1 квадратный микрон клеточной мембраны за 1 минуту под действием разности осмотического давления в 1 атмосферу) против амебы значится величина 0,26, т. е. проницаемость ее очень незначительна. Приспособительное значение такой низкой проницаемости очевидно: организмы, обитающие в пресной воде, сталкиваются с наибольшей разностью концентраций между наружной и внутренней средой и поэтому они вынуждены ограничить поступление воды внутрь, с тем чтобы сэкономить энергию, которая бы потребовалась на выкачивание этой воды обратно. Эритроциты не нуждаются в таком предохранительном приспособлении, так как обычно они бывают окружены плазмой крови - средой, находящейся в относительном осмотическом равновесии с их внутренней средой. Попав в воду, эти клетки тотчас же начинают набухать и довольно быстро лопаются, поскольку их мембрана недостаточно эластична, чтобы выдержать этот внезапный напор воды.

Если, как это обычно бывает в природе, молекулы растворенных веществ диссоциированы на ионы, несущие определенный электрический заряд, то в игру вступают новые силы. Хорошо известно, что мембраны многих, а возможно даже и всех, клеток обладают способностью сохранять известную разность потенциалов между своей наружной и внутренней поверхностью. Вследствие этого возникает определенный градиент потенциала, который наряду с градиентом концентраций служит движущей силой при пассивном переносе через клеточную мембрану.

Третья сила, участвующая в пассивном переносе через мембрану, это перенос растворенных веществ вместе с растворителем (втягивание с растворителем). Она вступает в действие лишь в том случае, если раствор может действительно протекать сквозь мембрану; иными словами, в том случае, если мембрана оказывается пористой. При этом движение частиц растворенного вещества, диффундирующих в направлении потока, ускоряется, а диффузия частиц в противоположном направлении замедляется. Этот эффект втягивания обычно не играет большой роли, однако в некоторых особых случаях значение его довольно велико.

Все три силы, участвующие в пассивном переносе, могут действовать порознь или совместно. Однако независимо от того, какая именно сила вызывает движение - градиент ли концентраций, градиент потенциала или эффект втягивания, - движение всегда происходит в «нисходящем» направлении и мембрана служит пассивной преградой. Вместе с тем в цитологии известно немало важных примеров, когда ни одной из этих трех сил не удается объяснить перенос веществ через мембрану. В этих случаях движение происходит в «восходящем» направлении, т. е. против сил, вызывающих пассивный перенос, и поэтому оно должно происходить за счет энергии, освобождающейся в результате процессов метаболизма, совершающихся в клетке. В этом активном переносе мембрана уже не представляет собой просто пассивную преграду, а действует как некий динамический орган.

Вплоть до недавнего времени все сведения, которыми мы располагали относительно строения клеточной мембраны, получались исключительно в результате изучения ее проницаемости и носили поэтому чисто косвенный характер. Например, было установлено, что многие вещества, растворимые в липидах (жирах), легко проходят через клеточную мембрану. В связи с этим возникло предположение, что в клеточной мембране имеется слой липидов и что вещества, растворимые в липидах, проходят сквозь мембрану, растворяясь по одну ее сторону и вновь освобождаясь с другой ее стороны. Однако оказалось, что и водорастворимые молекулы проходят сквозь клеточную мембрану. Пришлось предположить, что структура мембраны в какой-то мере напоминает сито, т. е. что мембрана снабжена порами или же нелипидными участками, а возможно, теми и другими одновременно; кроме того, для того чтобы объяснить особенности прохождения различных ионов, было допущено наличие в мембране участков, несущих электрический заряд. Наконец, в эту гипотетическую схему строения мембраны был введен также белковый компонент, поскольку появились данные, свидетельствующие, в частности, о смачиваемости мембраны, что несовместимо с чисто жировым составом.

Эти наблюдения и гипотезы сведены в модели клеточной мембраны, предложенной в 1940 г. Дж. Даниэлли. Согласно этой модели, мембрана состоит из двойного слоя липидных молекул, покрытых двумя белковыми слоями. Липидные молекулы лежат параллельно друг другу, но перпендикулярно плоскости мембраны, причем незаряженные их концы обращены друг к другу, а заряженные группы направлены к поверхности мембраны. На этих заряженных концах адсорбированы слои белка, состоящие из белковых цепей, которые образуют сплетение на наружной и внутренней поверхностях мембраны, придавая ей тем самым известную эластичность и устойчивость к механическим повреждениям, а также низкое поверхностное натяжение. Длина липидных молекул равна примерно 30 ангстремам, а толщина мономолекулярного слоя белка - 10 ангстремам; поэтому Даниэлли считал, что общая толщина клеточной мембраны равна примерно 80 ангстремам.

Результаты, полученные при помощи электронного микроскопа, подтвердили правильность модели, созданной Даниэлли. «Элементарная мембрана», исследованная на основании электронных микрофотографий, полученных Робертсоном, по своему виду и размерам соответствует предсказаниям, сделанным Даниэлли, и ее удалось наблюдать у клеток многих различных типов. В ней можно различить две более темные полоски толщиной примерно 20 ангстремов, которые вполне могут соответствовать двум белковым слоям модели; эти две полоски разделены более светлой сердцевиной толщиной 35 ангстремов, соответствующей липидному слою. Общая толщина мембраны, равная 75 ангстремам, довольно близка к величине, предусмотренной моделью.

Не нарушая общей симметрии этой модели, ее следовало бы дополнить с тем, чтобы учесть различия в химической природе внутренней и наружной поверхностей мембраны. Это позволило бы объяснить существование химических градиентов между внутренней и наружной поверхностью мембраны, выявляемое в некоторых наблюдениях. Кроме того, нам известно, что многие клетки одеты углеводсодержащей мукопротеидной оболочкой, толщина которой различна у клеток разных типов. Независимо от того, оказывает ли этот слой влияние на проницаемость, можно допустить, что он играет важную роль в пиноцитозе.

Помимо этих особенностей строения мембраны, так сказать в «поперечном сечении», при исследовании проницаемости выясняется, что структура ее неоднородна и в другом направлении. Известно, например, что клеточные мембраны пропускают частицы, величина которых не превышает известных пределов, задерживая все более крупные частицы, а это заставляет предполагать наличие в этих мембранах пор. Пока что существование пор не подтвердилось электронно-микроскопическими исследованиями. Это и не удивительно, поскольку предполагается, что эти поры очень малы и расположены очень далеко друг от друга, так что вся приходящаяся на их долю площадь не превышает одной тысячной общей поверхности мембраны. Если назвать мембрану ситом, то следует добавить, что дырочек в этом сите очень мало.

Еще более важное обстоятельство состоит в том, что для объяснения высокой избирательной способности, позволяющей многим клеткам отличать одни вещества от других, приходится допустить различную химическую специфичность разных участков мембраны. Выяснилось, например, что некоторые ферменты локализованы на поверхности клетки. По-видимому, их функция состоит в том, чтобы превратить вещества, нерастворимые в мембране, в растворимые производные, способные сквозь нее проходить. Известно немало случаев, когда клетка, проницаемая для какого-либо одного вещества, не пропускает другое вещество, близкое первому и сходное с ним по величине молекулы и электрическим свойствам.

Итак, мы видим, что тоненькая клеточная мембрана представляет собой довольно сложный аппарат, предназначенный для активного вмешательства в перемещение веществ, поступающих в клетку и выделяемых из нее. Подобный аппарат совершенно необходим для процесса активного переноса, при помощи которого и осуществляется главным образом это перемещение. Для того чтобы могло происходить это движение в «восходящем» направлении, клетка должна действовать против сил пассивного переноса. Однако, несмотря на усилия многих ученых, до сих пор не удалось вскрыть механизм, с помощью которого энергия, освобождающаяся в результате клеточного метаболизма, используется для переноса различных веществ через клеточную мембрану. Возможно, что в этой передаче энергии участвуют различные механизмы.

Живейший интерес привлекает проблема активного переноса ионов. Биологам еще 100 лет назад было известно существование разности потенциалов между наружной и внутренней поверхностью мембраны; примерно с того же времени они знают, что эта разность потенциалов оказывает влияние на перенос и распределение ионов. Однако лишь недавно они начали понимать, что сама эта разность потенциалов возникает и поддерживается за счет активного переноса ионов.

О важности этой проблемы свидетельствует то обстоятельство, что цитоплазма многих клеток содержит гораздо больше калия, чем натрия, а между тем они вынуждены жить в среде, для которой характерно как раз противоположное соотношение между содержанием этих двух ионов. Например, плазма крови содержит в 20 раз больше натрия, чем калия, тогда как эритроциты содержат в 20 раз больше калия, чем натрия. Мембрана эритроцитов обладает вполне определенной, хотя и низкой, пассивной проницаемостью как для ионов натрия, так и для ионов калия. Если бы эта проницаемость могла свободно проявляться, то ионы натрия потекли бы в клетку, а ионы калия начали бы вытекать из нее. Поэтому для сохранения существующего соотношения ионов клетке приходится непрерывно «выкачивать» ионы натрия и накапливать ионы калия против 50-кратного градиента концентрации.

Большая часть моделей, предложенных для объяснения активного переноса, основана на допущении существования каких-то молекул-переносчиков. Предполагается, что эти пока еще гипотетические переносчики вступают в соединение с ионами, находящимися на одной поверхности мембраны, проходят в таком виде сквозь мембрану и вновь освобождают ионы на другой поверхности мембраны. Движение таких соединений (молекул переносчика, присоединивших к себе ионы) в отличие от движения самих ионов происходит, как полагают, в «нисходящем» направлении, т. е. в соответствии с химическим градиентом концентрации.

Одна такая модель, созданная Т. Шоу в 1954 г., дает возможность не только объяснить перенос ионов калия и натрия через мембрану, но и установить некоторую связь между ними. Согласно модели Шоу, ионы калия и натрия (К + и Na +) переносятся через мембрану жирорастворимыми переносчиками (X и Y), специфичными для ионов. Образующиеся при этом соединения (КХ и NaY) способны диффундировать сквозь мембрану, тогда как для свободных переносчиков мембрана непроницаема. На наружной поверхности мембраны переносчики натрия превращаются в переносчиков калия, теряя при этом энергию. На внутренней же поверхности мембраны переносчики калия вновь превращаются в переносчиков натрия благодаря получению энергии, возникающей в процессе метаболизма клетки (поставщиками этой энергии служат, по всей вероятности, богатые энергией соединения, в молекуле которых имеются фосфатные связи).

Многие допущения, принятые в этой модели, трудно подтвердить экспериментально, и она признается далеко не всеми. Тем не менее мы сочли нужным о ней упомянуть, так как сама эта модель показывает всю сложность явления-активного переноса.

Задолго до того, как биологи занялись расшифровкой сложной игры физических сил, участвующих в переносе веществ через клеточную мембрану, им уже приходилось наблюдать клетки, так сказать, «за едой». В конце XIX века Илья Мечников впервые увидел, как белые кровяные тельца (лейкоциты) пожирали бактерий, и дал им название «фагоцитов». В 1920 г. А. Шеффер изобразил, как амеба ловит свою жертву - рисунок, ставший классическим. Процесс же пиноцитоза, выраженный менее ясно, был впервые открыт У. Льюисом лишь в 1931 г. Изучая поведение клеток в культуре тканей методом цейтраферной съемки, он заметил на периферии клеток мембранные выросты, которые ундулировали столь энергично, что время от времени замыкались, подобно сжатому кулаку, захватывая часть среды как бы в пузырек. Льюису все это показалось настолько похожим на процесс питья, что он придумал для этого явления и соответствующее название - «пиноцитоз».

Открытие Льюиса вначале не привлекло внимания, если не считать опубликованной в 1934 г. работы С. Маета и У. Дойля, которые сообщили о сходном явлении, наблюдавшемся ими у амебы. Пиноцитоз оставался просто любопытным фактом, пока в середине нынешнего века благодаря электронно-микроскопическим исследованиям не было установлено, что подобное заглатывание имеет гораздо более широкое распространение.

У амеб и у клеток из культуры тканей пиноцитоз можно наблюдать под обычным микроскопом. Благодаря высокой разрешающей способности электронного микроскопа у клеток многих других типов было также обнаружено образование микроскопических пузырьков. С физиологической точки зрения одним из наиболее интересных примеров такого рода служат клетки щеточного эпителия почек и кишечника: пузырьки, приносящие в клетку различные вещества, образуются у основания щеточной каемки, которой этот эпителий обязан своим названием. Основная черта пиноцитоза или фагоцитоза одинакова во всех клетках: некоторый участок клеточной мембраны отсоединяется от поверхности клетки и образует вакуоль или пузырек, который отрывается от периферии и мигрирует внутрь клетки.

Размеры пузырьков, образующихся при пиноцитозе, широко варьируют. У амеб и в клетках, взятых из культуры тканей, средний диаметр только что отделившейся пиноцитозной вакуоли равен 1-2 микронам; размеры же вакуолей, которые нам удается обнаружить при помощи электронного микроскопа, варьируют от 0,1 до 0,01 микрона. Нередко такие вакуоли сливаются друг с другом и их размеры при этом, естественно, увеличиваются. Поскольку большая часть клеток содержит ряд других вакуолей и гранул, пиноцитозные вакуоли вскоре теряются из виду, если только их не снабдить какой-нибудь «меткой». Вакуоли, образующиеся при фагоцитозе, конечно, гораздо крупнее и могут вместить в себя целые бактериальные клетки, клетки простейших, а в случае фагоцитов - фрагменты разрушенных тканей.

На основании простых экспериментов с амебой можно убедиться, что пииоцитоз нельзя наблюдать в любой ткани и в любое время, так как он вызывается присутствием в среде некоторых определенных веществ. В чистой воде пиноцитоза у амеб не происходит: во всяком случае, его не удается обнаружить под микроскопом. Если к воде, в которой находятся амебы, добавить сахар или какие-нибудь другие углеводы, то это ни к чему не приведет. При добавлении же солей, белков или некоторых аминокислот начинается пиноцитоз. С. Чепмен-Андерсен обнаружила, что у амеб каждый такой индуцированный пиноцитоз может продолжаться примерно 30 минут независимо от природы вызвавшего его фактора, причем за это время образуется до 100 пиноцитозных каналов и заглатывается соответствующее число вакуолей. Затем пиноцитоз прекращается и может возобновиться лишь спустя 3-4 часа. По Мнению Чепмен Андерсен, это объясняется тем, что после 30 минут пиноцитоза все участки наружной мембраны, способные к впячиванию, оказываются использованными.

Кроме того, Чепмен-Андерсен помогла решить один старый вопрос, а именно показала, что фагоцитоз и пиноцитоз с физиологической точки зрения представляют собой один и тот же процесс. В поставленном ею опыте амебам сначала давали возможность фагоцитировать столько съедобных для них инфузорий, сколько они могли захватить из среды, кишевшей этими микроорганизмами. Затем их переносили в среду, которая содержала фактор, индуцирующий пиноцитоз. Оказалось, что эти амебы способны образовать лишь несколько каналов (менее 10% обычного числа). И наоборот, амебы, исчерпавшие все свои возможности в отношении пиноцитоза, не фагоцитировали при перенесении в среду, содержавшую организмы, которые они обычно используют в пищу. Таким образом, создается впечатление, что в обоих случаях ограничивающим фактором оказывается поверхность мембраны.

С. Беннетт в 1956 г. высказал предположение, что пиноцитоз вызывается адсорбцией молекул или ионов индуктора на поверхности клеточной мембраны. Это предположение полностью подтвердилось в работах ряда исследователей. Вряд ли можно сомневаться, что у амебы адсорбция происходит на особой оболочке, которая состоит из слизи и обволакивает всю амебу. Поскольку предполагается, что такая оболочка имеется также у многих других клеток, было бы интересно выяснить, выполняет ли она подобную функцию во всех случаях.

Пузырек, вносящий в клетку индуцирующее вещество, вносит в нее при этом и некоторое количество жидкой среды. Чепмен-Андерсен и автор провели эксперимент с «двойной меткой» с целью определить, какому из двух веществ - индуктору или жидкости - принадлежит главная роль. Мы помещали амеб в среду, содержавшую в качестве индуктора белок, меченный радиоактивным изотопом, и сахар с другой радиоактивной меткой, который позволял определять количество поглощенной жидкости. Мы исходили из того, что если основным потребляемым веществом, равно как и веществом, индуцирующим поглощение, служит белок, то относительное содержание белка в вакуолях должно быть выше, чем в среде. Так оно и оказалось. Однако масштабы этого явления значительно превзошли наши ожидания. Общее количество белка, поглощенного в течение 30 минут, соответствовало примерно 25% всей массы амебы. Это весьма внушительная трапеза, которая свидетельствует о том, что наибольшее значение для клетки при пиноцитозе имеют вещества, адсорбируемые на поверхности.

Однако пищу, содержащуюся в вакуоли, все еще следует считать находящейся вне клетки, так как футляр, в который она заключена, представляет собой часть наружной мембраны. Мы должны выяснить, может ли подобное общение с внешней средой обеспечить сырьем метаболический аппарат клетки, и если да, то каким образом. Простейшим способом переноса веществ из вакуоли в цитоплазму было бы растворение мембраны под действием ферментов цитоплазмы. Однако электронно-микроскопические данные не подтверждают такого предположения: еще ни разу не удалось наблюдать исчезновение мембраны, образующей стейку вакуоли.

Поскольку мембрана, очевидно, сохраняется, основной задачей при изучении пиноцитоза становится исследование ее проницаемости. Не вызывает сомнений, что пиноцитозный пузырек отдает воду в цитоплазму; в этом нас убеждает заметное сморщивание вакуолей. Дж. Маршалл и автор показали, что у амеб сморщивание сопровождается постепенным повышением концентрированности содержимого вакуоли. Методом центрифугирования установлено, что в течение первых нескольких часов после пиноцитоза плотность вакуолей все время возрастает по сравнению с плотностью окружающей цитоплазмы. В конечном счете эти вакуоли превращаются в цитоплазматические гранулы, которые по своим размерам и поведению при центрифугировании напоминают митохондрии.

Выяснилось также, что мембрана вакуоли проницаема не только для воды, но также и для таких низкомолекулярных веществ, как глюкоза. Чепмен-Андерсен и автор, используя радиоактивную глюкозу, установили, что поглощаемая в процессе пиноцитоза глюкоза быстро выходит из вакуолей и равномерно распределяется по цитоплазме. Эта глюкоза вступает в нормальные процессы метаболизма, протекающие в клетке, как если бы она попала в клетку обычным способом - в результате диффузии с поверхности клетки; продукт ее метаболизма - радиоактивная углекислота - вскоре появляется среди продуктов выделения амебы. Чепмен-Андерсен и Д. Прескотт получили такие же результаты для некоторых аминокислот. Поэтому не остается сомнений, что при помощи пиноцитоза клетку можно «кормить» веществами, имеющими небольшие молекулы. Экспериментов со «скармливанием» больших молекул пока еще не проводилось.

Эти результаты заставляют предполагать, что происходит какое-то изменение проницаемости мембраны. Изменение это не удается заметить при помощи электронного микроскопа; мембрана кажется одинаковой как до, так и после пиноцитоза. Имеются, однако, сообщения, что оболочка из слизи, выстилающая изнутри стенку вакуоли, отслаивается и вместе с адсорбировавшимся на ней материалом в виде небольшого комочка остается в центре вакуоли.

В то же самое время происходит и другое, вероятно весьма важное, явление. На первичной вакуоли образуются маленькие вторичные вакуоли, которые отрываются от нее и мигрируют в цитоплазму. Мы еще не имеем возможности судить о роли этого процесса для распространения по цитоплазме содержимого первичной вакуоли. Ясно лишь одно: какие бы связанные с проницаемостью процессы ни происходили в мембранах этих микровакуолей, протекание их значительно облегчается благодаря такому огромному увеличению площади мембранной поверхности внутри клетки. Возможно, что вторичные вакуоли участвуют, кроме того, в создании избирательной проницаемости, унося из первичной вакуоли одни вещества и оставляя в ней другие.

Главная трудность, возникающая при попытках объяснения пиноцитоза как одного из основных физиологических процессов, протекающих в клетке, заключается в том, что он совершенно лишен специфичности. Правда, в деятельности фагоцитов, сенсибилизированных антителами на поглощение определенных бактерий, проявляется высокая специфичность. А. Тайлер считает, что при оплодотворении происходит пиноцитозное заглатывание спермы яйцеклеткой - процесс, начинающийся с взаимодействия специфических веществ на поверхностях яйцеклетки и сперматозоида. Однако, вообще говоря, механический захват из окружающей среды адсорбированных веществ и жидкости происходит, вероятно, без особого выбора. Возможно, что в результате этого в клетку нередко попадают бесполезные или даже вредные вещества.

Вероятно, где-то существует механизм, обладающий большей избирательностью. Легче всего предположить, что выбор, активный или пассивный, происходит на мембранах, которые окружают вакуоли и пузырьки, находящиеся в клетке. В таком случае пиноцитоз следует рассматривать не как процесс, исключающий перенос через мембрану, а как процесс, дополняющий такой перенос. Его главная задача должна состоять при этом в создании обширных внутренних поверхностей, на которых деятельность сил, связанных с пассивным и активным переносом, могла бы проявляться еще более эффективно, чем на собственно клеточной поверхности, и при этом с меньшим риском потерь вещества в результате утечки.

    Пассивная диффузия через мембрану клеток. Определяется градиентом концентрации веществ из области большей концентрации в область меньшей концентрации. Так всасываются липофильные (главным образом неполярные) вещества. Чем выше липофильность, тем лучше они всасываются.

    Фильтрация через водные поры мембран и через межклеточные промежутки. Движущей силой является гидростатическое и осмотическое давление. Так всасываются вода и гидрофильные молекулы.

    Облегченная диффузия через мембраны клеток с помощью переносчиков по градиенту концентрации и без затраты энергии. Так всасываются гидрофильные полярные лекарственные средства, глюкоза.

    Активный транспорт – осуществляется с помощью специальных транспортных систем (белков) и с затратой энергии. Особенность: избирательность к определенным соединениям (специфичность), насыщаемость транспортных систем, возможность транспорта лекарств против градиента концентрации. Переносные системы активного транспорта носят название насосы (K-Na-насос). Так всасываются полярные гидрофильные соединения, аминокислоты, сахара, витамины.

    Пиноцитоз (пино-пузырек) – поглощение внеклеточного материала мембраной клетки с образованием вакуоли (напоминает фагоцитоз). Так всасываются крупные молекулярные соединения и полипептиды.

Основная часть лекарств всасывается в ЖКТ и может быть инактивирована ферментами желудка и кишечной стенки. На всасывание влияет прием пищи, которая задерживает опорожнение кишечника, снижает кислотность, пищеварительную активность ферментов, ограничивает соприкосновение ЛВ со стенкой желудка. Абсорбция регулируется специальным транспортером – Р-гликопротеином. Он препятствует абсорбции ЛВ и способствует их выведению в просвет кишечника.

Всасывание лекарств у детей

Всасывание начинается в желудке. У новорожденных всасывание лекарств из желудка достаточно интенсивно. Это связано с особенностью слизистой оболочки желудка, которая тонкая, нежная, содержит много кровеносных и лимфатических сосудов. Всасывание лекарств из ЖКТ обратно пропорционально степени их диссоциации, которая зависит от рН среды. рН в желудке на высоте пищеварения

– при рождении –8;

– у детей месячного возраста 5,8;

– в возрасте 3 – 7 месяцев около 5;

– 8 – 9 месяцев –4,5;

– к 3 годам – 1,5-2,5, как у взрослых.

У детей младшего возраста лучше всасываются основания.

Основная часть ЛВ всасывается в кишечнике. рН в кишечнике ребенка 7,3 – 7,6, поэтому лучше всасываются основания. У детей большой размер пространств между клетками слизистой кишечника, поэтому через них легко проникают белки, полипептиды, антитела (из молока матери), ионы. Всасывание лекарств из кишечника происходит медленнее, чем у взрослых, и интенсивность вариабельна у разных детей. Моторика кишечника у новорожденных и грудных детей ускорена. На поверхности слизистой оболочки кишечника расположен слой связанной воды (его толщина находится в обратной зависимости от возраста ребенка) который препятствует всасыванию жирорастворимых веществ. Транспортные механизмы слизистой оболочки кишечника у детей первого года жизни еще плохо развиты, в связи с этим до полутора лет у детей медленно всасываются липидо- и водорастворимые ЛС.

Процессы пассивного и активного транспорта созревают к 4-му месяцу жизни ребенка.

  • Распределение микроорганизмов на царства в зависимости от структуры их клеточной организации
  • 2.2. Типы клеточной организации микроорганизмов
  • 2.3. Строение прокариотической (бактериальной) клетки
  • 2.4 Строение эукариотической клетки
  • Вопросы для самопроверки
  • Литература
  • 3.1. Основные и новые формы бактерий
  • 3.2. Спорообразование бактерий
  • 3.3. Движение бактерий
  • 3.4. Размножение бактерий
  • 3.5. Классификация прокариот
  • Тема 4 эукариоты (грибы и дрожжи)
  • 4.1. Микроскопические грибы, их особенности
  • 4.2. Размножение грибов
  • 1. Вегетативное размножение
  • 3. Половое размножение
  • 4.3. Классификация грибов. Характеристика наиболее важных представителей различных классов
  • 1. Класс фикомицетов
  • 2. Класс аскомицетов
  • 3. Класс базидиомицетов
  • 4. Класс дейтеромицетов
  • 4.4. Дрожжи. Их формы, размеры. Размножение дрожжей. Принципы классификации дрожжей
  • Вопросы для самопроверки
  • Литература
  • Тема 5 вирусы и фаги
  • 5.1. Отличительные признаки вирусов. Строение, размеры, формы, химический состав вирусов и фагов. Классификация вирусов
  • 5.2. Репродукция вирусов. Развитие вирулентного и умеренного фагов. Понятие о лизогенной культуре
  • 5.3. Распространение и роль вирусов и фагов в природе, в пищевой промышленности.
  • Тема 6 питание микроорганизмов
  • 6.1. Способы питания микроорганизмов
  • 6.2. Химический состав микробной клетки
  • 6.3. Механизмы поступления питательных веществ в клетку
  • 6.4. Пищевые потребности и типы питания микроорганизмов
  • Тема 7 конструктивный и энергетический обмен
  • 7.1. Понятие о конструктивном и энергетическом обмене
  • 7.2. Энергетический метаболизм, его сущность. Макроэргические соединения. Типы фосфорилирования.
  • 7.3. Энергетический метаболизм хемоорганогетеротрофов, использу­ющих процессы брожения.
  • 7.4. Энергетический метаболизм хемоорганогетеротрофов, использующих процесс дыхания.
  • 7.5. Энергетический метаболизм хемолитоавтотрофов. Понятие об анаэробном дыхании
  • Тема 8 культивирование и рост микроорганизмов
  • 8.1. Понятие о чистых и накопительных культурах микроорганизмов
  • 8.2. Способы культивирования микроорганизмов
  • 8.3. Закономерности роста статической и непрерывной культуры
  • Вопросы для самопроверки
  • Тема 9 влияние факторов внешней среды на микроорганизмы
  • 9.1. Взаимосвязь между микроорганизмами и средой. Классификация факторов воздействия на микроорганизмы
  • 9.2. Влияние физических факторов на микроорганизмы
  • 9.3. Влияние физико-химических факторов на микроорганизмы
  • 9.4. Влияние химических факторов на микроорганизмы
  • 9.5. Взаимоотношения между микроорганизмами. Влияние антибиотиков на микроорганизмы
  • 9.6. Использование факторов внешней среды для регулирования жизнедеятельности микроорганизмов при хранении пищевых продуктов
  • Вопросы для самопроверки
  • Тема 10 генетика микроорганизмов
  • 10.1. Генетика как наука. Понятие о наследственности и изменчивости.
  • 10.2. Генотип и фенотип микроорганизмов
  • 10.3. Формы изменчивости микроорганизмов
  • 10.4. Практическое значение изменчивости микроорганизмов
  • Тема 11 биохимические процессы вызываемые микроорганизмами
  • 11.1. Спиртовое брожение. Химизм, условия проведения процесса. Возбудители. Практическое использование спиртового брожения
  • 11.2. Молочнокислое брожение: гомо- и гетероферментативное. Химизм процесса. Характеристика молочнокислых бактерий. Практическое значение молочнокислого брожения
  • 11.3. Пропионовокислое брожение. Химизм процесса, возбудители. Практическое использование пропионовокислого брожения
  • 11.4. Маслянокислое брожение. Химизм процесса. Возбудители. Практическое использование и роль в процессах порчи пищевых продуктов
  • 11.5. Уксуснокислое брожение. Химизм процесса. Возбудители. Практическое использование и роль в процессах порчи пищевых продуктов
  • 11.6. Окисление жиров и высших жирных кислот микроорганизмами. Микроорганизмы - возбудители порчи жиров
  • 11.7. Гнилостные процессы. Понятие об аэробном и анаэробном гниении. Возбудители. Роль гнилостных процессов в природе, в пищевой промышленности
  • 11.8. Разложение клетчатки и пектиновых веществ микроорганизмами
  • Вопросы для самопроверки
  • Тема 12 Пищевые заболевания
  • 12.1 Характеристика пищевых заболеваний. Отличия пищевых инфекций от пищевых отравлений.
  • Сравнительная характеристика пищевых заболеваний
  • 12.2. Патогенные и условно – патогенные микроорганизмы. Их основные свойства. Химический состав и свойства микробных токсинов.
  • 12.4 Понятие об иммунитете. Виды иммунитета. Вакцины и сыворотки
  • 12.5. Пищевые отравления: токсикоинфекции и интоксикации. Характеристика возбудителей пищевых отравлений
  • 12.6. Понятие о санитарно – показательных микроорганизмах. Бактерии группы кишечнойя палочки и их значение при санитарной оценке пищевых продуктов.
  • Вопросы для самопроверки
  • Литература
  • Тема 13 распространение микроорганизмов в природе
  • 13.1. Биосфера и распространение микроорганизмов в природе
  • 13.2. Микрофлора почвы. Ее роль в инфицировании пищевых продуктов. Санитарная оценка почвы
  • 13.3. Микрофлора воздуха. Оценка качества воздуха по микробиоло­гическим показателям. Методы очистки и дезинфекции воздуха
  • 13.4. Микрофлора воды. Санитарная оценка воды по микробиологическим показателям. Способы очистки и дезинфекции воды
  • Литература
  • Список рекомендуемой литературы
  • Содержание
  • 6.3. Механизмы поступления питательных веществ в клетку

    Основным препятствием для транспорта веществ в клетку является цитоплазматическая мембрана (ЦПМ), которая обладает избирательной проницаемостью. ЦПМ регулирует не только поступление веществ в клетку, но и выход из нее воды, разнообразных продуктов обмена и ионов, что обеспечивает нормальную жизнедеятельность клетки.

    Существует несколько механизмов транспорта питательных веществ в клетку: простая диффузия, облегченная диффузия и активный транспорт.

    Простая диффузия - проникновение молекул вещества в клетку без помощи каких либо переносчиков. Движущей силой этого процесса служит градиент концентрации вещества, т. е. различия в его концентрации по обе стороны ЦПМ - во внешней среде и в клетке. Молекулы воды, некоторых газов (молекулярного кислорода, азота, водорода), некоторые ионы, концентрация которых во внешней среде выше, чем в клетке, перемещаются через ЦПМ путем пассивной диффузии. Пассивный перенос протекает до тех пор, пока концентрация веществ по обе стороны цитоплазматической мембраны не выравняется. Поступающая вода прижимает цитоплазму и ЦПМ к клеточной стенке и в клетке создается внутреннее давление на клеточную стенку, называемое тургором. Простая диффузия происходит без затраты энергии. Скорость такого процесса незначительна.

    Подавляющее большинство веществ может проникнуть внутрь клетки только при участии переносчиков - специфических белков, называемых пермеазами и локализованных на цитоплазматической мембране. Пермеазы захватывают молекулы растворенных веществ и переносят их к внутренней поверхность клетки. С помощью белков-переносчиков осуществляется перенос растворенных веществ путем облегченной диффузии и активного транспорта.

    Облегченная диффузия происходит по градиенту концентрации с помощью белков-переносчиков. Как и пассивная диффузия она протекает без затраты энергии. Скорость ее зависит концентрации веществ в растворе. Предполагают, что путем облегченной диффузии осуществляется также выход продуктов обмена из клетки. Путем облегченной диффузии в клетку проникают моносахара, аминокислоты.

    Активный транспорт - растворенные вещества переносятся независимо от градиента концентраций. Этот вид транспорта веществ нуждается в затратах энергии (АТФ). При активном транспорте скорость поступления веществ в клетку достигает максимума даже при малой концентрации его в питательной среде. Большинство веществ проникает в клетку микроорганизмов в результате активного транспорта.

    Прокариоты и эукариоты различаются по механизмам транспорта. У прокариот избирательное поступление питательных веществ осуществляется главным образом путем активного транспорта, а у эукариот - путем облегченной диффузии, а реже путем активного транспорта. Выход продуктов из клетки чаще всего осуществляется путем облегченной диффузии.

    6.4. Пищевые потребности и типы питания микроорганизмов

    Разнообразные вещества, в которых нуждаются микроорганизмы и которые потребляются для синтеза основных органических веществ клетки, роста, размножения и для получения энергии называются питательными веществами, а среда, содержащая питательные вещества называется питательной средой.

    Потребности микроорганизмов в питательных веществах разнообразны, но независимо от потребностей в питательной среде должны содержаться все необходимые элементы, которые имеются в клетках микроорганизмов, причем соотношение органогенных элементов должно примерно соответствовать этому соотношению в клетке.

    Источниками водорода и кислорода является вода, молекулярный водород и кислород, а также химические вещества, содержащие эти элементы. Источниками макроэлементов являются минеральные соли (калий фосфорнокислый, магний сернокислый, железо хлорное и др.).

    Источниками углерода и азота могут быть как органические, так и неорганические соединения.

    В соответствии с принятой классификацией микроорганизмов по типу питания их разделяют на группы в зависимости источника углерода, источника энергии и источника электронов (природы окисляемого субстрата).

    В зависимости отисточника углерода микроорганизмы делятся на:

    * автотрофы (сами себя питающие), которые используют углерод из неорганических соединений (углекислого газа и карбонатов);

    * гетеротрофы (питаются за счет других) - используют углерод из органических соединений.

    В зависимости отисточника энергии различают:

    * фототрофы - микроорганизмы,которые в качестве источника энергии используют энергию солнечногосвета;

    * хемотрофы - энергетическим материалом для этих микроорганизмов являются разнообразные органические и неорганические вещества.

    В зависимости отисточника электронов (природы окисляемого

    субстрата микроорганизмы делятся на:

    * литотрофы - окисляют неорганические вещества и за счет этого получают энергию;

    * ораганотрофы - получают энергию путем окисления органических веществ.

    Среди микроорганизмов чаще всего встречаются микроорганизмы, имеющие следующие типы питания:

    Фотолитоавтротрофия - тип питания, характерный для микробов, использующих энергию света и энергию окисления неорганических соединений для синтеза веществ клетки из диоксида углерода.

    Фотоорганогетеротрофия - такой тип питания микроорганизмов, когда для получения энергии, необходимой для синтеза веществ клетки из диоксида углерода, помимо световой энергии используется энергия окисления органических соединений.

    Хемолитоавтотрофия - типпитания, при котором микроорганизмы получают энергию за счет окислениянеорганических соединений, а источником углерода являются неорганические соединения.

    фотоавтотрофы → фотолитоавтотрофы

    фотоорганоавтотрофы

    фототрофы фотогетеротрофы→ фотолитогетеротрофы

    фотоорганогетеротрофы

    микроорганизмы

    Хемоорганогетеротрофия - тип питания микроорганизмов, получающих энергию и углерод из органических соединений. Микроорганизмы, встречающиеся в пищевых продуктах, имеют именно такой тип питания.

    Кроме углерода важнейшим элементом питательной среды является азот. Автотрофы обычно используют азот из минеральных соединений, а гетеротрофы кроме неорганических соединений азота используют аммонийные соли органических кислот, аминокислоты, пептоны и другие соединения. Некоторые гетеротрофы усваивают атмосферный азот (азотфиксаторы).

    Существуют микроорганизмы, которые сами не способны синтезировать то или иное органическое вещество (например, аминокислоты, витамины). Такие микроорганизмы называют ауксотрофными по данному веществу. Вещества, которые добавляют для ускорения роста и обменных процессов называют ростовыми веществами.

    Вопросы для самопроверки

    1. Какие способы питания живых существ Вы знаете?

    2. Что такое «внеклеточное пищеварение»?

    3. Какие существуют механизмы поступления питательных веществ в клетку?

    4. Чем отличается простая диффузия от облегченной?

    5. В чем существенное отличие пассивной и облегченной диффузии от активного транспорта?

    6. Какова роль пермеаз в переносе растворенных веществ в клетку?

    7. Каков механизм поступления в клетку воды, газов?

    8. Каким путем попадают в клетку простые сахара и аминокислоты?

    9. Как прокариоты и эукариоты различаются по механизмам транспорта веществ?

    10. Что такое «органогенные элементы»?

    11. Что такое макроэлементы?

    12 . Каковы потребности микроорганизмов в питательных веществах?

    13 . Как классифицируют микроорганизмы зависимости от источника углерода и энергии?

    14. Что такое «хемоорганогетеротрофы»?

    16 . Какие типы питания Вы знаете?

    17 . Что такое «азотфикисирующие микроорганизмы»?

    18. Что такое «ауксотрофные микроорганизмы»?

    Литература

      Чурбанова И.Н. Микробиология. - М.: Высшая школа, 1987.

      Мудрецова-Висс К.А. Микробиология. - М.: Экономика, 1985.- 255 с.

      Мишустин Е.Н., Емцев В.Т. Микробиология. - М.: Агропромиздат, 1987, 350с.

      Вербина Н.М., Каптерева Ю.В. Микробиология пищевых производств.- М.: Агропромиздат, 1988.- 256 с.