Взаимосвязь нервной и эндокринной систем. Слаженный тандем – как взаимодействуют эндокринная и нервная системы


Последнее обновление: 30/09/2013

Описание строения и функций нервной и эндокринной системы,принцип работы, их значение и роль в организме.

Тогда как - это строительные блоки для человеческой «системы сообщений», существуют целые сети нейронов, которые передают сигналы между мозгом и телом. Эти организованные сети, включающие в себя более триллиона нейронов, создают так называемую нервную систему. Она состоит из двух частей: центральной нервной системы (головной и спинной мозг) и периферической (нервы и нервные сети по всему телу)

Эндокринная система тоже неотъемлемая часть системы передачи информации по телу. Эта система использует расположенные по всему телу железы, которые регулируют множество процессов, таких как обмен веществ, пищеварение, кровяное давление и рост. Хотя эндокринная система не связана напрямую с нервной, они часто работают совместно.

Центральная нервная система

Центральная нервная система (ЦНС) состоит из головного мозга и спинного. Первичная форма связи в ЦНС - это нейрон. Мозг и спинной мозг жизненно необходимы для функционирования организма, поэтому вокруг них есть ряд защитных барьеров: кости (череп и позвоночник), и мембранные ткани (мозговые оболочки). Кроме того, обе структуры находятся в защищающей их спинномозговой жидкости.

Почему головной мозг и спинной мозг так важны? Стоит думать, что эти структуры - фактический центр нашей «системы сообщений». ЦНС способна обработать все ваши ощущения и обдумать опыт от этих ощущений. Информация о боли, прикосновении, холоде и т. д. собирается рецепторами по всему телу, а затем передается в нервную систему. ЦНС также посылает сигналы в тело для того, чтобы контролировать движения, действия и реакции на внешний мир.

Периферическая нервная система

Периферическая нервная система (ПНС) состоит из нервов, распространяющихся дальше центральной нервной системы. Нервы и нервные сети ПНС на самом деле являются просто пучками аксонов, выходящих из нервных клеток. Размер нервов колеблется от относительно малых, до достаточно больших, которые легко разглядеть даже без увеличительного стекла.

ПНС может быть дополнительно разделена на две разные нервные системы: соматическую и вегетативную .

Соматическая нервная система: передает физические ощущения и команды к движениям и действиям. Эта система состоит из афферентных (чувствительных) нейронов, доставляющих информацию от нервов к головному и спинному мозгу, и эфферентных (иногда часть из них называют двигательными) нейронов, передающих информацию от ЦНС к мышечным тканям.

Вегетативная нервная система: контролирует непроизвольные функции, например сердцебиение, дыхание, пищеварение и кровяное давление. Это система также связана с эмоциональными реакциями, такими как потоотделение и плач. Вегетативная нервная система может быть разделена далее на симпатическую и парасимпатическую системы.

Симпатическая нервная система: Симпатическая нервная система контролирует реакции тела на стресс. Когда эта система работает, дыхание и сердцебиение учащаются, пищеварение замедляется или останавливается, зрачки расширяются и усиливается потоотделение. Эта система отвечает за подготовку тела к опасной ситуации.

Парасимпатическая нервная система : Парасимпатическая нервная система действует в противовес к симпатической системе. Э система помогает «успокоить» тело после критической ситуации. Сердцебиение и дыхание замедляются, пищеварение возобновляется, зрачки сужаются и потоотделение прекращается.

Эндокринная система

Как было замечено ранее, эндокринная система не является частью нервной системы, но все же необходима для передачи информации через тело. Эта система состоит из желез, которые выделяют химические передатчики - гормоны. Они через кровь поступают в особые участки тела, включая органы и ткани организма. Среди самых важных эндокринных желез можно отметить шишковидную железу, гипоталамус, гипофиз, щитовидную железу, яичники и тестикулы. Каждая из этих желез выполняет определенные функции в разных областях тела.

Нервная система, посылая свои эфферентные импульсы по нервным волокнам прямо к иннервируемому органу, вызывает направленные локальные реакции, которые быстро наступают и столь же быстро прекращаются.

Гормональным дистантным влияниям принадлежит преимущественная роль в регуляции таких общих функций организма, как обмен веществ, соматический рост, репродуктивные функции. Совместное участие нервной и эндокринной систем в обеспечении регуляции и координации функций организма определяется тем, что регуляторные влияния, оказываемые как нервной, так и эндокринной системами, реализуются принципиально одинаковыми механизмами.

Вместе с тем все нервные клетки проявляют способность синтезировать белковые вещества, о чем свидетельствуют сильное развитие гранулярной эндоплазматической сети и обилие рибонуклеопротеидов в их перикарионах. Аксоны таких нейронов, как правило, заканчиваются на капиллярах, и синтезированные продукты, аккумулировавшиеся в терминалях, выделяются в кровь, с током которой разносятся по организму и оказывают в отличие от медиаторов не локальное, а дистантное регулирующее действие подобно гормонам эндокринных желез. Такие нервные клетки получили наименование нейросекреторных, а вырабатываемые и выделяемые ими продукты – нейрогормонов. Нейросекреторные клетки, воспринимая, как всякий нейроцит, афферентные сигналы от других отделов нервной системы, посылают свои эфферентные импульсы через кровь, т. е. гуморально (как эндокринные клетки). Поэтому нейросекреторные клетки, занимая в физиологическом отношении промежуточное положение между нервными и эндокринными, объединяют нервную и эндокринную системы в единую нейроэндокринную систему и таким образом выступают в роли нейроэндокринных трансмиттеров (переключателей).

В последние годы было установлено, что в составе нервной системы имеются пептидергические нейроны, которые, помимо медиаторов, выделяют и ряд гормонов, способных модулировать секреторную деятельность эндокринных желез. Поэтому, как уже отмечалось выше, нервная и эндокринная системы выступают как единая регулирующая нейроэндокринная система.

Классификация эндокринных желез

В начале развития эндокринологии как науки железы внутренней секреции пытались группировать по их происхождению из того или иного эмбрионального зачатка зародышевых листков. Однако дальнейшее расширение знаний о роли эндокринных функций в организме показало, что общность или близость эмбриональных закладок совершенно не предрешает совместного участия желез, развивающихся из таких зачатков, в регуляции функций организма.

Согласно современным представлениям, в эндокринной системе выделяют следующие группы желез внутренней секреции: нейроэндокринные трансмиттеры (секреторные ядра гипоталамуса, эпифиз), которые с помощью своих гормонов переключают информацию, поступающую в центральную нервную систему, на центральное звено регуляции аденогипофиззависимых желез (аденогипофиз) и нейрогемальный орган (задняя доля гипофиза, или нейрогипофиз). Аденогипофиз благодаря гормонам гипоталамуса (либеринам и статинам) выделяет адекватное количество тропных гормонов, которые стимулируют функцию аденогипофиззависимых желез (коры надпочечников, щитовидной и половой желез). Взаимоотношения аденогипофиза и зависимых от него желез внутренней секреции осуществляются по принципу обратной связи (или плюс-минус). Нейрогемальный орган собственных гормонов не продуцирует, но накапливает гормоны крупноклеточных ядер гипоталамуса (окситоцин, АДГ-вазопрессин), затем выделяет их в кровяное русло и таким образом регулирует деятельность так называемых органов-мишеней (матки, почек). В функциональном отношении нейросекреторные ядра, эпифиз, аденогипофиз и нейрогемальный орган составляют центральное звено эндокринной системы, тогда как эндокринные клетки неэндокринных органов (пищеварительной системы, воздухоносных путей и легких, почек и мочеотводящих путей, вилочковой железы), аденогипофиззависимые железы (щитовидная железа, кора надпочечников, половые железы) и аденогипофизнезависимые железы (околощитовидные железы, мозговое вещество надпочечников) являются периферическими железами внутренней секреции (или железами-мишенями).



Суммируя все выше сказанное, можно сказать, что эндокринная система представлена следующими основными структурными компонентами.

1. Центральные регуляторные образования эндокринной системы:

1) гипоталамус (нейросекреторные ядра);

2) гипофиз;

3) эпифиз.

2. Периферические эндокринные железы:

1) щитовидная железа;

2) околощитовидные железы;

3) надпочечники:

а) корковое вещество;

б) мозговое вещество надпочечников.

3. Органы, объединяющие эндокринные и неэндокринные функции:

1) гонады:

а) семенник;

б) яичник;

2) плацента;

3) поджелудочная железа.

4. Одиночные гормонопродуцирующие клетки:

1) нейроэндокринные клетки группы ПОДПА (APUD) (нервного происхождения);

2) одиночные гормонопродуцирующие клетки (не нервного происхождения).

На основании огромного количества фактического материала сегодня можно говорить о существовании единой регуляторной системы организма, объединяющей воедино нервную, иммунную и эндокринную системы (рис. 17).
По мнению некоторых ученых, иммунитет - это диссеминированный мобильный головной мозг.
Иммунная система, так же, как и центральная нервная система способна распознавать, запоминать и извлекать информацию из памяти. Носителями функций неврологической памяти являются нейроны анализаторной и лимбической систем мозга. Носителем функции иммунологической памяти являются определенные субпопуляции Т- и В- лимфоцитов, названные лимфоцитами памяти.
Иммунная система распознает внешние и внутренние антигенные сигналы разной природы, запоминает и передает информацию через

Рис. 17. Нейроиммуногормональные взаимодействия (по Play fair, 1998в нашей модификации)

кровоток с помощью цитокинов в центральную нервную систему. Последняя, в свою очередь, обработав сигнал, оказывает регуляторное воздействие на иммунную систему с помощью нейропептидов и гормонов гипоталамо-гипофизарно-адреналовой оси.
В настоящее время вскрыты механизмы нейроиммунных взаимодействий на уровне рецепторного аппарата мембран клеток. На мембранах лимфоцитов обнаружены рецепторы к медиаторам - бета-эн-
дорфину, метэнкефалину, белку Р, адренергическим веществам. Установлено, что иммунокомпетентные клетки способны продуцировать кортикотропин, эндорфин, энкефалин. Доказана возможность действия медиаторов иммунитета - интерлейкинов (ИЛ-1, ИЛ-2 и ИЛ-6), интерферонов, фактора некроза опухолей (ФНО) - на нейроглиальные клетки и нейроны. Под влиянием ИЛ-1 и ФНО усиливается секреция кортикотропина клетками гипофиза. В свою очередь, нейроны способны продуцировать ИЛ-2 и ИЛ-6 (см. рис. 17).
Установлено, что мембраны нейронов и лимфоцитов снабжены одинаковыми рецепторами для кортикотропина, вазопрессина и бета- эндорфина. Постулируется, что таким образом с помощью общих клеточных рецепторов и растворимых гормонов, нейтропептидов и цитокинов иммунная и центральная нервная система обмениваются информацией между собой.
Доказано, что при синдроме гиперпродукции цитокинов избыточная секреция макрофагами ИЛ-1, интерферона и ФНО является причиной депрессивных состояний, что сопровождается мышечной слабостью, длительным субфебрилитетом, панцитопенией, гепатосплено- мегалией. Это подтверждается следующими аргументами: 1) развитием депрессии у людей, которым с лечебной целью вводят цитокины; 2) изменением под влиянием ИЛ-1 гормонального статуса, приводящим к депрессии; 3) частой ассоциацией с депрессией болезней, сопровождающихся активацией макрофагов (ишемия, ревматоидный артрит и др.);

  1. большей частотой депрессий у женщин вследствие того, что эстрогены усиливают секрецию ИЛ-1 макрофагами.
Развитие депрессии ведет к снижению функции ЕК-клеток на фоне резкого повышения продукции кортикостерона и кортизола. В условиях длительного стресса под влиянием гликокортикоидов и половых гормонов подавляется функция иммуной системы. Адреналин и норадреналин подавляют миграцию лейкоцитов и активность лимфоцитов. Кроме того, лимфоциты на своей мембране имеют также рецепторы к таким гормонам",." " как инсулин, тироксин и соматотропин. Последний также способен модулировать функцию Т- и В-лимфоцитов.
Известно, что на мембране Т-лимфоцитов и нейронов имеется общий антиген Тх-1, что еще раз свидетельствует в пользу общности этих систем. Были проведены интересные опыты. Цыплят условно-рефлекторно обучали не склевывать гранулы красного цвета. После этого обученным птицам водили моноклональные антитела к Тх-1-антигену Т-лимфоцитов. В результате у цыплят развивалась амнезия, строго зависимая от дозы антител. Птицы начинали склевывать гранулы всех цветов. Авторы сделали вывод о том, что Т-лимфоциты принимают участие в процессе формирования памяти.

Представление о неразрывном единстве нервной, эндокринной и иммунной систем, а также неврологической и иммунологической памяти, укрепили данные о широком распространении нейропептидов вне мозга. В настоящее время описано уже более 20 нейропептитов, выявленных в крови и лимфе. Среди них нейротензин, вазоактивный нейропептид кишечника (субстанция Р), пептид-дельта сна, энкефалины, эндорфины (эндогенные опиоиды) и др. Считают, что именно нейропептидам принадлежит важная роль в интегративной деятельности нервной, эндокринной и иммунной систем за счет наличия на их клетках одинаковых рецепторов, через которые и осуществляется взаимосвязь.
Современная жизнь характеризуется стрессами и глобальным загрязнением окружающей среды, которые, воздействуя на психонейроиммуноэндокринную систему, приводят "к развитию вторичного иммунодефицита и нейропсихических нарушений.
Из числа многочисленных определений понятия "стресс" приведем формулировку Г. Н. Кассиля (1983): стресс - "общая адаптивная реакция организма, развивающаяся в ответ на угрозу нарушения гомеостаза ".
В соответствии с причинами существует следующая классификация видов стресса: 1) эмоциональный; 2) социальный; 3) производственный; 4) академический; 5) спортивный; 6) гипокинетический; 7) репродуктивный; 8) вакцинальный; 9) лекарственный; 10) инфекционный;
11) космический; 12) пищевой; 13) транспортировочный; 14) гипоксический; 15) болевой; 16) температурный; 17) световой; 18) шумовой;
19) обонятельный; 20) стресс патологических процессов; 21) экологический. Несомненно, этот список может быть продолжен.
Большой вклад в понимание механизмов развития вторичного иммунодефицита под влиянием экстремальных эмоциональных и физических факторов внесло открытие Б. Б. Першина и соавт. Ими был установлен факт исчезновения в периферической крови иммуноглобулинов всех классов у спортсменов на пике спортивной формы перед ответственными состязаниями. В последующем эти данные были подтверждены на студентах в период сдачи экзаменов.


Особенности систем

Автономная нервная система пронизывает все наше тело подобно тончайшей паутине. У нее есть две ветви: возбуждения и торможения. Симпатическая нервная система – это возбуждающая часть, она приводит нас в состояние готовности столкнуться с вызовом или опасностью. Нервные окончания выделяют медиаторы, стимулирующие надпочечники к выделению сильных гормонов – адреналина и норадреналина. Они в свою очередь повышают частоту сердечных сокращений и частоту дыхания, и действуют на процесс пищеварения посредством выделения кислоты в желудке. При этом возникает сосущее ощущение под ложечкой. Парасимпатические нервные окончания выделяют другие медиаторы, снижающие пульс и частоту дыхания. Парасимпатические реакции – это расслабление и восстановление баланса.

Эндокринная система организма человека объединяет небольшие по величине и различные по своему строению и функциям железы внутренней секреции, входящие в состав эндокринной системы. Это гипофиз с его независимо функционирующими передней и задней долями, половые железы, щитовидная и паращитовидные железы, кора и мозговой слой надпочечников, островковые клетки поджелудочной железы и секреторные клетки, выстилающие кишечный тракт. Все вместе взятые они весят не более 100 граммов, а количество вырабатываемых ими гормонов может исчисляться миллиардными долями грамма. Гипофиз, вырабатывающий более 9 гормонов, регулирует активность большинства других эндокринных желез и сам находится под контролем гипоталамуса. Щитовидная железа регулирует рост, развитие, интенсивность обмена веществ в организме. Вместе с паращитовидной железой она также регулирует уровень кальция в крови. Надпочечники тоже влияют на интенсивность обмена веществ и помогают организму противостоять стрессам. Поджелудочная железа регулирует уровень сахара в крови и одновременно действует как железа внешней секреции -выделяет через протоки в кишечник пищеварительные ферменты. Эндокринные половые железы - семенники у мужчин и яичники у женщин - сочетают выработку половых гормонов с неэндокринными функциями: в них еще и созревают половые клетки. Сфера влияния гормонов исключительно велика. Они оказывают прямое воздействие на рост и развитие организма, на все виды обмена веществ, на половое созревание. Между железами внутренней секреции нет прямых анатомических связей, но существует взаимозависимость функций одной железы от других. Эндокринную систему здорового человека можно сравнить с хорошо сыгранным оркестром, в котором каждая железа уверенно и тонко ведет свою партию. А в роли дирижера выступает главная верховная железа внутренней секреции – гипофиз. Передняя доля гипофиза выделяет в кровь шесть тропных гормонов: соматотропный, адренокортикотропный, тиреотропный, пролактин, фолликулостимулирующий и лютеинизирующий – они направляют и регулируют деятельность других желез внутренней секреции.

Гормоны регулируют активность всех клеток организма. Они влияют на остроту мышления и физическую подвижность, телосложение и рост, определяют рост волос, тональность голоса, половое влечение и поведение. Благодаря эндокринной системе человек может приспосабливаться к сильным температурным колебаниям, излишку или недостатку пищи, к физическим и эмоциональным стрессам. Изучение физиологического действия эндокринных желез позволило раскрыть секреты половой функции и более подробно изучить механизм рождения детей, а также ответить на
вопрос, почему одни люди высокого роста, а другие низкого, одни полные, другие худые, одни медлительные, другие проворные, одни сильные, другие слабые.

В нормальном состоянии существует гармоничный баланс между активностью эндокринных желез, состоянием нервной системы и ответом тканей-мишеней (тканей, на которые направлено воздействие). Любое нарушение в каждом из этих звеньев быстро приводит к отклонениям от нормы. Избыточная или недостаточная продукция гормонов служит причиной различных заболеваний, сопровождающихся глубокими химическими изменениями в организме.

Изучением роли гормонов в жизнедеятельности организма и нормальной и патологической физиологией желез внутренней секреции занимается эндокринология.

Связь эндокринной и нервной систем

Нейроэндокринная регуляция есть результат взаимодействия нервной и эндокринной систем. Она осуществляется благодаря влиянию высшего вегетативного центра мозга - гипоталамуса - на расположенную в мозге железу - гипофиз, образно именуемую «дирижером эндокринного оркестра». Нейроны гипоталамуса выделяют нейрогормоны (рилизинг-факторы), которые, поступая в гипофиз, усиливают (либерины) или тормозят (статины) биосинтез и выделение тройных гормонов гипофиза. Тройные гормоны гипофиза, в свою очередь, регулируют активность периферических желез внутренней секреции (щитовидной, надпочечников, половых), которые в меру своей активности изменяют состояние внутренней среды организма и оказывают влияние на поведение.

Гипотеза нейроэндокринной регуляции процесса реализации генетической информации предполагает существование на молекулярном уровне общих механизмов, обеспечивающих как регуляцию активности нервной системы, так и регуляторные воздействия на хромосомный аппарат. При этом одной из существенных функций нервной системы является регуляция активности генетического аппарата по принципу обратной связи в соответствии с текущими нуждами организма, влиянием среды и индивидуальным опытом. Другими словами, функциональная активность нервной системы может играть роль фактора, изменяющего активность генных систем.

Гипофиз может получать сигналы, оповещающие о том, что происходит в теле, но он не имеет прямой связи с внешней средой. Между тем, для того, чтобы факторы внешней среды постоянно не нарушали жизнедеятельность организма, должно осуществятся приспособление тела к меняющимся внешним условиям. О внешних воздействиях организм узнает через органы чувств, которые передают полученную информацию в центральную нервную систему. Являясь верховной железой эндокринной системы, гипофиз сам подчиняется центральной нервной системе и в частности гипоталамусу. Этот высший вегетативный центр постоянно координирует, регулирует деятельность различных отделов мозга, всех внутренних органов. Частота сердечных сокращений, тонус кровеносных сосудов, температура тела, количество воды в крови и тканях, накопление или расход белков, жиров, углеводов, минеральных солей – словом существование нашего организма, постоянство его внутренней среды находится под контролем гипоталамуса. Большинство нервных и гуморальных путей регуляции сходится на уровне гипоталамуса и благодаря этому в организме образуется единая нейроэндокринная регуляторная система. К клеткам гипоталамуса подходят аксоны нейронов, расположенных в коре больших полушарий и подкорковых образованиях. Эти аксоны секретируют различные нейромедиаторы, оказывающие на секреторную активность гипоталамуса как активирующее, так и тормозное влияние. Поступающие из мозга нервные импульсы гипоталамус «превращает» в эндокринные стимулы, которые могут быть усилены или ослаблены в зависимости от гуморальных сигналов, поступающих в гипоталамус от желез и тканей подчиненных ему.

Гипоталамус руководит гипофизом, используя и нервные связи, и систему кровеносных сосудов. Кровь, которая поступает в переднюю долю гипофиза, обязательно проходит через серединное возвышение гипоталамуса и обогащается там гипоталамическими нейрогормонами. Нейрогормоны - это вещества пептидной природы, которые представляют собой части белковых молекул. К настоящему времени обнаружено семь нейрогормонов, так называемых либеринов (то есть освободителей), которые стимулируют в гипофизе синтез тропных гормонов. А три нейрогормона - пролактостатин, меланостатин и соматостатин, - напротив, тормозят их выработку. К нейрогормонам относят также вазопрессин и окситоцин. Окситоцин стимулирует сокращение гладкой мускулатуры матки при родах, выработку молока молочными железами. Вазопрессин активно участвует в регуляции транспорта воды и солей через клеточные мембраны, под его влиянием уменьшается просвет кровеносных сосудов и, следовательно, повышается давление крови. За то, что этот гормон обладает способностью задерживать воду в организме, его часто называют антидиуретическим гормоном (АДГ). Главной точкой приложения АДГ являются почечные канальцы, где он стимулирует обратное всасывание воды из первичной мочи в кровь. Продуцируют нейрогормоны нервные клетки ядер гипоталамуса, а затем по собственным аксонам (нервным отросткам) транспортируют в заднюю долю гипофиза, и уже отсюда эти гормоны поступают в кровь, оказывая сложное воздействие на системы организма.

Тропины образующиеся в гипофизе не только регулируют деятельность подчиненных желез, но и выполняют самостоятельные эндокринные функции. Например, пролактин оказывает лактогенное действие, а также тормозит процессы дифференцировки клеток, повышает чувствительность половых желез к гонадотропинам, стимулирует родительский инстинкт. Кортикотропин является не только стимулятором стердогенеза но и активатором липолиза в жировой ткани, а также важнейшим участником процесса превращения в мозге кратковременной памяти в долговременную. Гормон роста может стимулировать активность иммунной системы, обмен липидов, сахаров и т.д. Также некоторые гормоны гипоталамуса и гипофиза могут образовываться не только в этих тканях. Например, соматостатин (гормон гипоталамуса, ингибирующий образование и секрецию гормона роста) обнаружен также в поджелудочной железе, где он подавляет секрецию инсулина и глюкагона. Некоторые вещества действуют в обеих системах; они могут быть и гормонами (т.е. продуктами эндокринных желез), и медиаторами (продуктами определенных нейронов). Такую двоякую роль выполняют норадреналин, соматостатин, вазопрессин и окситоцин, а также передатчики диффузной нервной системы кишечника, например холецистокинин и вазоактивный кишечный полипептид.

Однако не следует думать, что гипоталамус и гипофиз лишь отдают приказы, спуская по цепочке «руководящие» гормоны. Они и сами чутко анализируют сигналы, поступающие с периферии, от желез внутренней секреции. Деятельность эндокринной системы осуществляется на основе универсального принципа обратной связи. Избыток гормонов той или иной железы внутренней секреции тормозит выделение специфического гормона гипофиза, ответственного за работу данной железы, а недостаток побуждает гипофиз усилить выработку соответствующего тройного гормона. Механизм взаимодействия между нейрогормонами гипоталамуса, тройными гормонами гипофиза и гормонами периферических желез внутренней секреции в здоровом организме отработан длительным эволюционным развитием и весьма надежен. Однако достаточно сбоя в одном звене этой сложной цепи, чтобы произошло нарушение количественных, а порой и качественных соотношений в целой системе, влекущее за собой различные эндокринные заболевания.



Двустороннее действие нервной и эндокринной систем

Каждая ткань и орган человека функционируют под двойным контролем: автономной нервной системы и гуморальных факторов, в частности гормонов. Этот двойной контроль - основа «надёжности» регуляторных влияний, заданием которых является поддерживать определённый уровень отдельных физических и химических параметров внутренней среды.

Эти системы возбуждают или тормозят различные физиологические функции, чтобы свести к минимуму отклонения этих параметров вопреки значительным колебаниям во внешней среде. Эта деятельность согласовывается с активностью систем, обеспечивающих взаимодействие организма с условиями окружающей среды, которая постоянно изменяется.

Органы человека имеют большое количество рецепторов, раздражение которых вызывает различные физиологические реакции. Вместе с тем к органам подходит много нервных окончаний от центральной нервной системы. Значит, существует двусторонняя связь органов человека с нервной системой: они получают сигналы от центральной нервной системы и, в свою очередь, являются источником рефлексов, которые изменяют состояние их самих и организма в целом.

Эндокринные железы и гормоны, которые они вырабатывают, находятся в тесной взаимосвязи с нервной системой, образуя общий интегральный механизм регуляции.

Связь эндокринных желез с нервной системой является двояконаправленной: железы плотно иннервированы со стороны вегетативной нервной системы, а секрет желез через кровь действует на нервные центры.

Замечание 1

Для поддержания гомеостаза и осуществления основных жизненных функций эволюционно возникли две основные системы: нервная и гуморальная, которые работают взаимосогласованно.

Гуморальная регуляция осуществляется путём образования в эндокринных железах или группах клеток, выполняющих эндокринную функцию (в железах смешанной секреции), и поступления в циркулирующие жидкости биологически активных веществ - гормонов. Для гормонов характерно дистантное действие и способность к влиянию в очень низких концентрациях.

Интеграция нервной и гуморальной регуляции в организме особенно ярко проявляется во время действия стрессовых факторов.

Клетки тела человека объединены в ткани, а те, в свою очередь, в системы органов. В целом всё это представляет единую надсистему организма. Всё огромное количество клеточных элементов при отсутствии в организме сложного механизма регуляции не имело бы возможности функционировать как единое целое.

Система желез внутренней секреции и нервная система играют особенную роль в регуляции. Именно состояние эндокринной регуляции определяет характер всех протекающих в нервной системе процессов.

Пример 1

Под действием андрогенов и эстрогенов формируется инстинктивное поведение, половые инстинкты. Очевидно, что гуморальная система контролирует и нейроны, так же как и другие клетки нашего организма.

Эволюционно нервная система возникла позднее, чем эндокринная. Эти две системы регуляции дополняют друг друга, образуя единый функциональный механизм, который обеспечивает высокоэффективную нейрогуморальную регуляцию, ставя её во главе всех систем, которые согласовывают все жизненные процессы многоклеточного организма.

Это регулирование постоянства внутренней среды в организме, которая происходит по принципу обратной связи, не может выполнять все задания адаптации организма, но очень эффективна для поддержания гомеостаза,.

Пример 2

Кора надпочечников вырабатывает стероидные гормоны в ответ на эмоциональное возбуждение, заболевания, голод и т.п.

Необходима связь между нервной системой и эндокринными железами, чтобы эндокринная система могла реагировать на эмоции, свет, запахи, звуки и т.д.

Регулирующая роль гипоталамуса

Регулирующее влияние ЦНС на физиологическую активность желез осуществляется через гипоталамус.

Гипоталамус афферентным путём связан с другими частями ЦНС, прежде всего со спинным, продолговатым и средним мозгом, таламусом, базальными ганглиями (подкорковые образования, расположенные в белом веществе полушарий большого мозга), гипокампом (центральной структурой лимбической системы), отдельными полями коры больших полушарий и др. Благодаря этому в гипоталамус поступает информация со всего организма; сигналы от экстеро- и интерорецепторов, которые попадают в ЦНС через гипоталамус, передаются эндокринными железами.

Таким образом, нейросекреторные клетки гипоталамуса трансформируют афферентные нервные стимулы в гуморальные факторы с физиологической активностью (в частности у рилизинг - гормоны).

Гипофиз как регулятор биологических процессов

Гипофиз получает сигналы, которые оповещают обо всём происходящем в организме, но прямой связи с внешней средой не имеет. Но для того, чтобы жизнедеятельность организма не нарушалась постоянно факторами внешней среды, должно происходить приспособление организма к изменчивым внешним условиям. О внешних влияниях организм узнаёт получая информацию от органов чувств, передающих её к центральной нервной системе.

Выполняя роль верховной железы внутренней секреции , гипофиз сам управляется центральной нервной системой и, в частности, гипоталамусом. Этот высший вегетативный центр и занимается постоянной координацией и регуляцией деятельности различных отделов мозга и всех внутренних органов.

Замечание 2

Существование всего организма, постоянство его внутренней среды контролируется именно гипоталамусом: обмен белков, углеводов, жиров и минеральных солей, количество воды в тканях, тонус сосудов, частота сердечных сокращений, температура тела и т. п.

Единая нейроэндокринная регуляторная система в организме образуется в результате объединения на уровне гипоталамуса большинства гуморальных и нервных путей регуляции.

Аксоны от расположенных в коре больших полушарий и подкорковых ганглиях нейронов подходят к клеткам гипоталамуса. Они секретируют нейромедиаторы, которые как активируют секреторную активность гипоталамуса, так и тормозят. Нервные импульсы, поступившие из мозга, под влиянием гипоталамуса превращаются в эндокринные стимулы, которые в зависимости от поступающих к гипоталамусу из желез и тканей гуморальных сигналов, усиливаются или ослабевают

Руководство гипоталамусом гипофиза происходит с использованием и нервных связей, и системы кровеносных сосудов. Поступающая в переднюю долю гипофиза кровь обязательно проходит сквозь срединное поднятие гипоталамуса, где происходит её обогащение гипоталамическими нейрогормонами.

Замечание 3

Нейрогормоны имеют пептидную природу и являются частями белковых молекул.

В наше время определили семь нейрогормонов - либеринов («освободителей»), стимулирующих синтез тропных гормонов в гипофизе. А три нейрогормона наоборот, тормозят их выработку – меланостатин, пролактостатин и соматостатин.

Вазопрессин и окситоцин также являются нейрогормонами. Окситоцин стимулирует сокращение гладкой мускулатуры матки во время родов, выработку молока молочными железами. При активном участии вазопрессина происходит регуляция транспорта воды и солей через клеточные мембраны, уменьшается просвет сосудов (повышается кровяное давление). За способность задерживать воду в организме, этот гормон часто называют антидиуретическим гормоном (АДГ). Главная точка приложения АДГ - почечные канальцы, где под его влиянием происходит стимуляция обратного всасывания воды в кровь из первичной мочи.

Нервные клетки ядер гипоталамуса вырабатывают нейрогормоны, а потом собственными аксонами транспортируют их в заднюю долю гипофиза, и уже отсюда эти гормоны способны поступать в кровь, вызывая сложное влияние на системы организма.

Однако гипофиз и гипоталамус не только посылают приказы посредством гормонов, но и сами способны осень точно анализировать сигналы, которые поступают от периферических эндокринных желез. Эндокринная система действует по принципу обратной связи. Если железа внутренней секреции вырабатывает избыток гормонов, то замедляется выделение гипофизом специфического гормона, а если гормона вырабатывается недостаточно, то усиливается выработка соответствующего тропного гормона гипофиза.

Замечание 4

В процессе эволюционного развития механизм взаимодействия гормонов гипоталамуса, гормонов гипофиза и желез внутренней секреции отработан достаточно надёжно. Но если произойдёт сбой работы хотя бы одного звена этой сложной цепи, тут же возникнет нарушение соотношений (количественных и качественных) во всей системе, несущее различные эндокринные заболевания.