Гематоэнцефалический барьер его строение и значение. Обходя гематоэнцефалический барьер. Особенности морфологического строения


Человека занимают травмы. И лишь незначительную часть поражений вызывают непосредственно заболевания ЦНС.

В силу некоторых своих особенностей нервная система является весьма интересной с точки зрения науки. Все дело в том, что анатомия крайне сложна для понимания. Составляющие ее основу нервные волокна имеют собственное, отличное от других тканей организма человека, строение.

Одной из основных особенностей является крайне низкая способность к регенерации. Нельзя сказать, что поврежденные нервы не восстанавливаются, но восстановление их происходит очень медленно и требует наличия определенных условий.

Еще одной особенностью нервной системы, в общем, и ЦНС в частности является гематоэнцефалический барьер (ГЭБ).

Ни для кого не секрет, что головной и спинной мозг находятся в специальной жидкости, близкой по составу к однако отличающейся от него содержанием различных фракций белков и микроэлементов. Спинномозговая (или цереброспинальная) жидкость образуется из крови и лимфы под действием особого «фильтра», роль которого выполняет гематоэнцефалический барьер.

Специальные клетки с межэндотелиальными контактами препятствуют проникновению в эту жидкость. Сегодня ученые до конца не выяснили, как происходит регуляция фильтрующей способности барьера, но достоверно известно, что пропускная его способность меняется при изменении метаболической активности мозга. Кроме этого, гематоэнцефалический барьер имеет отличия в разных отделах мозга, что обусловливает различную способность его к фильтрации жидкостей (крови и лимфы).

Проведенные исследования показали, что часть веществ проникает через ГЭБ преимущественно из кровеносных сосудов, другая их часть - из системы, а остальные способны поступать из обеих сред с одинаковой скоростью. Собственная, уникальная и неизученная пока система саморегуляции состава спинномозговой жидкости обеспечивает поступление веществ в том количестве, какое нужно центральной нервной системе. Так происходит с регуляцией объема жидкой части, количества и состава белков, а также состава поступающих ионов (последние представлены калием и натрием).

Для чего необходим гематоэнцефалический барьер?

В первую очередь его действие направлено на создание относительно изолированной среды для центральной нервной системы, но еще он выполняет и защитную функцию, предотвращая проникновение в ликвор бактерий и вирусов из тока крови или лимфы. Важно понимать, что в случае нарушений в функционировании ГЭБ последствия будут весьма серьезными. Так, проникшие в ликвор бактерии приводят к менингитам, энцефалитам и прочим воспалительным процессам мозговых оболочек и тканей мозга.

Ряд исследований, проведенных специалистами, продемонстрировал возможность воздействовать на пропускную способность гематоэнцефалического барьера различными препаратами. Кроме этого, у используемых ранее лекарственных средств начали выявлять данную особенность. Сегодня врачам хорошо известно, какие медикаменты и как влияют на ГЭБ. Более того, мы научились использовать данные свойства во благо человека.

Таким образом, гематоэнцефалический барьер выполняет ряд весьма значимых функций, которые поддерживают оптимальное состояние внутренних органов челвоечесокго организма. Однако стоит понимать, что такие особенности барьера делают его весьма чувствительным как к травмам, так и к различным патологическим состояниям, именно поэтому так важно понимать и учитывать эти аспекты при профилактике и лечении болезней.

Ни для кого не является секретом, что организм должен поддерживать постоянство своей внутренней среды, или гомеостаз, затрачивая для этого энергию, иначе он не будет отличаться от неживой природы. Так, кожа защищает наш организм от внешнего мира на органном уровне.

Но оказывается, значение имеют и другие барьеры, которые образуются между кровью и некоторыми тканями. Они называются гистогематическими. Эти барьеры необходимы по различным причинам. Иногда нужно механически ограничить проникновение крови к тканям. Примерами таких барьеров служат:

  • гематоартикулярный барьер – между кровью и суставными поверхностями;
  • гематоофтальмический барьер – между кровью и светопроводящими средами глазного яблока.

Все знают, на своем опыте, что, разделывая мясо видно, что поверхность суставов всегда лишена контакта с кровью. В том случае, если кровь изливается в полость сустава (гемартроз), то она способствует его зарастанию, или анкилозу. Понятно, почему нужен гематоофтальмический барьер: внутри глаза есть прозрачные среды, например, стекловидное тело. Его задача – как можно меньше поглощать проходящий свет. В том случае, если не будет этого барьера, то кровь будет проникать в стекловидное тело, и мы будем лишены возможности видеть.

Что такое ГЭБ?

Один из самых интересных и загадочных гистогематических барьеров – это гематоэнцефалический барьер, или преграда между капиллярной кровью и нейронами центральной нервной системы. Говоря современным, информационным языком, между капиллярами и веществом головного мозга существует полностью «защищенное соединение».

Смысл гематоэнцефалического барьера (аббревиатура – ГЭБ), состоит в том, что нейроны не вступают в непосредственный контакт с капиллярной сетью, а взаимодействуют с питающими капиллярами через «посредников». Этими посредниками являются астроциты, или клетки нейроглии.

Нейроглия – это вспомогательная ткань центральной нервной системы, которая выполняет множество функций, например опорную, поддерживая нейроны, и трофическую, питая их. В данном случае, астроциты непосредственно забирают из капилляра все, что нужно нейронам, и передают им. Одновременно они контролируют, чтобы в головной мозг не попали вредные и чужеродные вещества.

Таким образом, через гематоэнцефалический барьер не проходят не только различные токсины, но и многие лекарства, и это составляет предмет исследования современной медицины, поскольку с каждым днем количество препаратов, которые регистрируются для лечения заболеваний головного мозга, а также антибактериальных и противовирусных препаратов, все увеличивается.

Немного истории

Известный врач и микробиолог, Пауль Эрлих, стал мировой знаменитостью, благодаря изобретению сальварсана, или препарата № 606, который стал первым, пусть токсичным, но эффективным препаратом для лечения застарелого сифилиса. Это лекарство содержало мышьяк.

Но Эрлих также очень много экспериментировал с красителями. Он был уверен, что точно так же, как краситель плотно пристает к ткани (индиго, пурпур, кармин), он пристанет и к болезнетворному микроорганизму, стоит только найти такое вещество. Конечно, он должен не только прочно фиксироваться на микробной клетке, но и быть смертельным для микробов. Несомненно, «подлил масла в огонь» тот факт, что он женился на дочери известного и зажиточного фабриканта – текстильщика.

И Эрлих начал экспериментировать с различными и очень ядовитыми красками: анилиновыми и трипановыми.

Вскрывая лабораторных животных, он убеждался, что краситель проникает во все органы и ткани, но не имеет возможности диффундировать (проникать) в головной мозг, который оставался бледным.

Вначале его выводы были неверными: он предположил, что просто краситель не окрашивает мозг по причине того, что в нем много жира, и он отталкивает краску.

А затем открытия, предшествующие открытию гематоэнцефалического барьера, посыпались, как из рога изобилия, и сама идея стала постепенно оформляться в умах ученых. Наибольшее значение играли следующие эксперименты :

  • если ввести краситель внутривенно, то максимум, что он способен окрасить – это хориоидальные сосудистые сплетения желудочков головного мозга. Дальше ему «путь закрыт»;
  • если принудительно ввести краситель в ликвор, выполнив люмбальную пункцию, то мозг окрашивался. Однако, «наружу» из ликвора краситель не попадал, и остальные ткани оставались бесцветными.

После этого совершенно логично было предположено, что ликвор – это жидкость, которая находится «по ту сторону» преграды, главная задача которой – защитить центральную нервную систему.

Впервые термин ГЭБ появился в 1900 году, сто шестнадцать лет назад. В англоязычной медицинской литературе он именуется «blood-brain barrier», а в русском языке название привилось в виде «гематоэнцефалического барьера».

В дальнейшем этот феномен изучался достаточно подробно. Перед второй мировой войной появились данные о том, что есть гематоэнцефалический и гематоликворный барьер, а также есть гематоневральный вариант, который находится не в ЦНС, а расположен в периферических нервах.

Строение и функции барьера

Именно от бесперебойной работы гематоэнцефалического барьера зависит наша жизнь. Ведь наш головной мозг потребляет пятую часть всего количества кислорода и глюкозы, и при этом его вес составляет не 20% всей массы тела, а около 2%, то есть потребление мозгом питательных веществ и кислорода в 10 раз выше среднего арифметического значения.

В отличие, например, от клеток печени, мозг работает только «на кислороде», и аэробный гликолиз - это единственный возможный вариант существования всех без исключения нейронов . В том случае, если в течение 10-12 секунд питание нейронов прекращается, то человек теряет сознание, а после остановки кровообращения, находясь в состоянии клинической смерти, шансы на полное восстановление функции мозга существуют только на протяжении 5 -6 минут.

Это время увеличивается при сильном охлаждении организма, но при нормальной температуре тела окончательная гибель мозга происходит через 8-10 минут, поэтому только интенсивная деятельность ГЭБ позволяет нам быть «в форме».

Известно, что многие неврологические заболевания развиваются только вследствие того, что нарушена проницаемость гематоэнцефалического барьера, в сторону его повышения.

Мы не будем подробно вдаваться в гистологию и биохимию структур, составляющих барьер. Отметим только лишь, что строение гематоэнцефалического барьера включает в себя особую структуру капилляров. Известны следующие особенности, приводящие к появлению барьера:

  • плотные контакты между эндотелиальными клетками, выстилающими капилляры изнутри.

В других органах и тканях эндотелий капилляров выполнен «небрежно», и между клетками есть большие промежутки, через которые происходит свободный обмен тканевой жидкостью с периваскулярным пространством. Там, где капилляры формируют гематоэнцефалический барьер, клетки эндотелия расположены очень плотно, и герметичность не нарушается;

  • энергетические станции – митохондрии в капиллярах превышает физиологическую потребность в таковых в других местах, поскольку гематоэнцефалический барьер требует больших затрат энергии;
  • высота клеток эндотелия существенно ниже, чем в сосудах другой локализации, а количество транспортных ферментов в цитоплазме клетки значительно выше. Это позволяет отвести большую роль трансмембранному цитоплазматическому транспорту;
  • эндотелий сосудов в своей глубине содержит плотную, скелетообразующую базальную мембрану, к которой снаружи прилегают отростки астроцитов;

Кроме особенностей эндотелия, снаружи от капилляров существуют особые вспомогательные клетки – перициты. Что такое перицит? Это клетка, которая может снаружи регулировать просвет капилляра, а при необходимости может обладать функциями макрофага, к захвату и уничтожению вредных клеток.

Поэтому, еще не дойдя до нейронов, мы можем отметить две линии защиты гематоэнцефалического барьера : первая – это плотные соединения эндотелиоцитов и активный транспорт, а вторая – это макрофагальная активность перицитов.

Далее гематоэнцефалический барьер включает в себя большое количество астроцитов, которые и составляют наибольшую массу этой гистогематической преграды. Это небольшие клетки, которые окружают нейроны, и, по определению их роли, умеют «почти всё».

Они постоянно обмениваются веществами с эндотелием, контролируют сохранность плотных контактов, активность перицитов и просвет капилляров. Кроме того, головному мозгу нужен холестерин, но он не может проникнуть из крови ни в ликвор, ни пройти сквозь гематоэнцефалический барьер. Поэтому астроциты берут на себя его синтез, помимо основных функций.

Кстати, одним из факторов патогенеза рассеянного склероза является нарушение миелинизации дендритов и аксонов. А для образования миелина нужен холестерин. Поэтому роль дисфункции ГЭБ в развитии демиелинизирующих заболеваний является установленной, и в последнее время изучается.

Там, где нет барьеров

А есть ли такие места в центральной нервной системе, где не существует гематоэнцефалического барьера? Казалось бы, это невозможно: столько трудов было приложено к тому, чтобы создать несколько уровней защиты от внешних вредных веществ. Но, оказывается, в некоторых местах ГЭБ не составляет единую «стену» защиты, а нем имеются отверстия. Они нужны для тех веществ, которые вырабатываются головным мозгом и отправляются на периферию в качестве команд: это гормоны гипофиза. Поэтому есть свободные участки, как раз в зоне гипофиза, и эпифиза. Они существуют, чтобы гормоны и нейротрансмиттеры могли свободно проникать в кровь.

Существует и другая зона, свободная от ГЭБ, которая находится в районе ромбовидной ямки или дна 4 желудочка головного мозга. Там находится рвотный центр. Известно, что рвота может возникать не только вследствие механического раздражения задней стенки глотки, но и при наличии токсинов, попавших в кровь . Поэтому именно в этой области и существуют особые нейроны, которые постоянно производят «мониторинг» качества крови на наличие вредных веществ.

Как только их концентрация достигнет определенной величины, эти нейроны активируются, вызывая чувство тошноты, а затем и рвоту. Справедливости ради нужно сказать, что не всегда рвота связана с концентрацией вредных веществ. Иногда, при значительном повышении внутричерепного давления (при гидроцефалии, менингитах) рвотный центр активируется вследствие прямого избыточного давления при развитии синдрома

1.Введение 2

2.Особенности морфологического строения 4

3.Функции гематоэнцефалического барьера 5

4.Транспорт веществ через гематоэнцефалический барьер 7

4.1 Межклеточный транспорт 7

4.2 Канальцевая проницаемость 7

4.3 Свободная диффузия 8

4.4 Облегчённая диффузия 9

4.5 Активный транспорт 10

4.6 Везикулярный транспорт 11

5.Области мозга без гематоэнцефалического барьера 13

6. Повреждения гематоэнцефалического барьера 14

7.Проницаемость гематоэнцефалического барьера для антибактериальных препаратов 17

8.Гемато-ликворный барьер 18

Литература 19

  1. Введение

Организм человека и высших животных обладает рядом специ­фических физиологических систем, обеспечивающих приспособление (адаптацию) к постоянно изменяющимся условиям существования. Этот процесс тесно связан с необходимостью обязательного сохра­нения постоянства существенных физиологических параметров, внутренней среды организма, физико-химического состава тканевой жидкости межклеточного пространства.

Среди гомеостатических приспособительных механизмов, при­званных защитить органы и ткани от чужеродных веществ и регули­ровать постоянство состава тканевой межклеточной жидкости, веду­щее место занимает гематоэнцефалический барьер.

Термин «гематоэнцефалический барьер» был предложен Л.С.Штерн и Р.Готье в 1921 г. Гематоэнцефалический барьер (ГЭБ) принадлежит к числу внутренних или гистогематических барьеров которые отгораживают непосредственно питательную среду отдельных органов от универсальной внутренней среды – крови. ГЭБ – это комплексный физиологический механизм, находящийся в центральной нервной системе на границе между кровью и нервной тканью, и регулирующий поступление из крови в цереброспинальную жидкость и нервную ткань циркулирующих в крови веществ. ГЭБ участву­ет в регулировании состава цереброспинальной жидкости (ЦСЖ) (Агаджанян Н. А., Торшин, В. И., 2001).

В основных положениях о ГЭБ подчеркивается следующее:

Гематоэнцефалический барьер является в большей степени не анатомическим образованием , а функциональным понятием, ха­рактеризующим определенный физиологический механизм;

Проникновение веществ в мозг осуществляется главным образом не через ликворные пути, а через кровеносную систему на уровне капилляр - нервная клетка;

Как лю­бой существующий в организме физиологический механизм, гема­тоэнцефалический барьер находится под регулирующим влиянием нервной и гуморальной систем;

Среди управляющих гематоэнцефалическим барьером факторов ведущим является уровень деятель­ности и метаболизма нервной ткани.

  1. Особенности морфологического строения

Капилляры мозга отличаются тем, что эндотелиальные клетки не обладают ни порами, ни фенестрами. Соседние клетки черепицеобразно накладываются одна на другую. В области стыков клеток находятся замыкательные пластинки. Базальная мембрана имеет трехслойное строение и содержит мало перицитов. Главное отличие этой структуры – наличие глиальных элементов, расположенных между кровеносным сосудом и нейроном. Отростки астроцитов формируют своеобразный футляр вокруг капилляра, это исключает проникновение веществ в мозговую ткань, минуя глиальные элементы. Имеются перинейрональные глиоциты, находящиеся в тесном контакте с нейронами. В состав ГЭБ входит внеклеточное пространство, заполненное основным аморфным веществом углеводно-белковой природы (мукополисахариды и мукопротеины).

  1. Функции гематоэнцефалического барьера

Гематоэнцефалический барьер регулирует проникновение из кро­ви в мозг биологически активных веществ, метаболитов, химических веществ, воздействующих на чувствительные структуры мозга, препятствует поступлению в мозг чужеродных веществ, микроорганиз­мов, токсинов.

Основной функцией, характеризующей гематоэнцефалический барьер, является проницаемость клеточной стенки. Необходимый уровень физиологической проницаемости, адекватный функциональ­ному состоянию организма, обусловливает динамику поступления в нервные клетки мозга физиологически активных веществ.

Функциональная схема гематоэнцефалического барьера включает в себя наряду с гистогематическим барьером нейроглию и систему ликворных пространств (Росин Я. А. 2000). Гистогематический барьер имеет двойную функцию: регуляторную и защитную. Регуляторная функция обеспечивает относительное постоянство физи­ческих и физико-химических свойств, химического состава, физи­ологической активности межклеточной среды органа в зависимости от его функционального состояния. Защитная функция гистогематического барьера заключается в защите органов от поступления чужеродных или токсичных веществ эндо- и экзогенной природы.

Ведущим компонентом морфологического субстрата гематоэнце­фалического барьера, обеспечивающим его функции, является стенка капилляра мозга. Существуют два механизма проникновения веще­ства в клетки мозга: через цереброспинальную жидкость, которая служит промежуточным звеном между кровью и нервной или глиальной клеткой, которая выполняет питательную функцию (так называемый ликворный путь), и через стенку капилляра. У взрослого организма основным путем движения вещества в нервные клетки является гематогенный (через стенки капилляров); ликворный путь становится вспомогательным, дополнительным.

Проницаемость гематоэнцефалического барьера зависит от фун­кционального состояния организма, содержания в крови медиаторов, гормонов, ионов. Повышение их концентрации в крови приводит к снижению проницаемости гематоэнцефалического барьера для этих веществ.

Функциональная система гематоэнцефалического барьера представляется важным компонентом нейрогуморальной регуляции. В частности, через гематоэнцефалический барьер реализуется прин­цип обратной химической связи в организме. Именно таким образом осуществляется механизм гомеостатической регуляции состава внут­ренней среды организма.

Регуляция функций гематоэнцефалического барьера осуществ­ляется высшими отделами ЦНС и гуморальными факторами. Зна­чительная роль в регуляции отводится гипоталамо-гипофизарной адреналовой системе. В нейрогуморальной регуляции гематоэнце­фалического барьера важное значение имеют обменные процессы, в частности в ткани мозга. При различных видах церебральной патологии, например травмах, различных воспалительных пораже­ниях ткани мозга, возникает необходимость искусственного сниже­ния уровня проницаемости гематоэнцефалического барьера. Фарма­кологическими воздействиями можно увеличить или уменьшить про­никновение в мозг различных веществ, вводимых извне или циркулирующих в крови (Покровского В.М., Коротько Г.Ф., 2003).

  1. Транспорт веществ через гематоэнцефалический барьер

Гематоэнцефалический барьер не только задерживает и не пропускает целый ряд веществ из крови в вещество мозга, но и выполняет противоположную функцию - транспортирует необходимые для метаболизма ткани мозга вещества. Гидрофобные вещества и пептиды проникают в мозг либо с помощью специальных транспортных систем, либо через каналы клеточной мембраны. Для большинства других веществ возможна пассивная диффузия.

Существует несколько видов транспорта веществ через ГЭБ

4.1 Межклеточный транспорт

В капиллярах периферических органов и тканей, транспорт веществ осуществляется в основном через фенестра́ции сосудистой стенки и межклеточные промежутки. В норме между клетками эндотелия сосудов мозга такие промежутки отсутствуют. В связи с этим питательные вещества проникает в мозг лишь через клеточную стенку. Вода, глицерин и мочевина могут свободно диффундировать через плотные контакты между эндотелиальными клетками ГЭБ.

4.2 Канальцевая проницаемость

Небольшие полярные вещества, например молекулы воды, с трудом могут диффундировать через гидрофобные отделы клеточной мембраны эндотелиоцита. Несмотря на это доказана высокая проницаемость ГЭБ для воды.

В клеточной мембране эндотелиоцита располагаются специальные гидрофильные каналы - аквапоры. В эндотелии периферических сосудов они образованы белком аквапорином-1 (AQP1), экспрессия которого ингибируется астроцитами в клетках сосудов мозга. На поверхности мембран клеток капиллярной сети мозга представлены в основном аквапорин-4 (AQP4) и аквапорин-9 (AQP9).

Через аквапоры происходит регуляция содержания воды в веществе мозга. Они делают возможным быструю диффузию воды как в направлении мозга так и в направлении сосудистого русла в зависимости от осмотического градиента концентраций электролитов. Для глицерина, мочевины и ряда других веществ на поверхности клеточных мембран формируются собственные каналы - акваглицеропорины. В ГЭБ они представлены в основном белком аквапорином-9, который также образует аквапоры.

Процесс транспорта молекул через специализированные каналы осуществляется быстрее активного переноса с помощью специальных белков транспортёров. В то же время различные биологически активные вещества могут активировать или инактивировать транспортные каналы расположенные на клеточных мембранах.

4.3 Свободная диффузия

Самой простой формой транспорта через ГЭБ является свободная (или пассивная) диффузия. Она может осуществляться как через клеточные мембраны эндотелиоцитов, так и через плотные межклеточные контакты. Для диффузии веществ, движущей силой является разница концентраций. Диффузия веществ пропорциональна градиенту концентраций в кровеносном русле и ткани мозга. Для неё не требуется затрат клеточной энергии.

Липофи́льные структурные элементы клеточной мембраны, а также плотные межклеточные контакты снижают количество веществ, которые могут свободно диффундировать через ГЭБ. Проницаемость ГЭБ напрямую зависит от липофильности каждого конкретного вещества.

Проницаемость ГЭБ также зависит от молярной массы вещества. Молекулы с массой более 500 г/моль не могут диффундировать через ГЭБ. В то же время ГЭБ не является механическим барьером, который свободно пропускает молекулы меньшего размера и не пропускает большего. Процесс клеточной диффузии является динамическим, при этом он легче для веществ с молярной массой 200 г/моль, чем для веществ с 450 г/моль. Чем липофильнее и меньше вещество, тем легче оно диффундирует через клеточную мембрану.

Немецким биофизиком Тро́йбле Г. в 1971 году была высказана гипотеза о транспорте молекул с низкой массой через клеточную мембрану. Согласно ей они проникают в клетку через небольшие промежутки между цепями жирных кислот двойного слоя мембраны. Эти промежутки изменчивы, их образование не требует клеточной энергии. Теория Тройбле была спектроскопически доказана в 1974 году.

Липофильность и небольшая молекулярная масса не являются гарантией проницаемости ГЭБ для каждого конкретного вещества. Высокомолекулярные соединения (моноклона́льные антитела, рекомбина́нтные белки и другие) удерживаются ГЭБ.

4.4 Облегчённая диффузия

Особой формой диффузии через клеточную мембрану является облегчённая диффузия. Целый ряд необходимых для мозга веществ, как например, глюкоза и многие аминокислоты, полярны и слишком велики для непосредственной диффузии через клеточную мембрану. Для них на поверхности клеточных мембран эндотелиоцитов располагаются специальные транспортные системы. Например, для глюкозы и аскорбиновой кислоты это GLUT-1-транспортёр. Их количество на поверхности обращённой в полость сосуда в 4 раза больше, чем на обращённой к мозгу.

Кроме транспортёров глюкозы на поверхности эндотелия располагаются множество белковых молекул выполняющих подобную функцию для других веществ. Так, например, MCT-1 и MCT-2 ответственны за перенос лактата, пирувата, мевалоновой кислоты, бутиратов и ацетатов. SLC-7 транспортирует аргинин, лизин и орнитин. В геноме мыши выявлено 307 генов отвечающих за синтез SLC-белков, ответственных за облегчённую диффузию через клеточную мембрану различных веществ.

Транспортёры могут осуществлять перенос веществ в одном либо двух направлениях. В отличие от активного транспорта облегчённая диффузия проходит по градиенту концентраций и не требует затрат клеточной энергии.

4.5 Активный транспорт

В отличие от пассивного транспорта, не требующего затрат энергии и проходящего по градиенту концентраций, активный заключается в переносе веществ против градиента концентраций и требует больших затрат клеточной энергии, получаемой при распаде молекул АТФ. При активном транспорте веществ, из кровеносного русла в ткань мозга, говорят о притоке вещества (англ. Influx ), в обратном направлении - об оттоке (англ. Efflux ).

В ГЭБ располагаются активные транспортёры энкефалина, антидиуретического гормона, -энкефалина (DPDPE). Первым индентифицированным Efflux-транспортёром ГЭБ является Р-гликопротеин, который закодирован геном MDR1.

Впоследствии были открыты, относящийся к классу ABC-транспортёров англ. Multidrug Resistance-Related Proteine (MRP1), англ. Breast Cancer Resistance Proteine (BCRP) расположенный преимущественно на обращённой в просвет сосуда поверхности.

Некоторые Efflux- и Influx-транспортёры являются стереоселективными, то есть переносят лишь определённый стереоизомер (энантиоме́р) того или иного вещества. Так например, D-изомер аспарагиновой кислоты является преку́рсором N-метил-D-аспартата (NMDA), который влияет на секрецию различных гормонов: лютеинизирующего гормона, тестостерона или окситоци́на. L-изомеры аспарагиновой и глутаминовой кислоты являются стимулирующими аминокислотами и их избыток токсичен для ткани мозгаhttp://ru.wikipedia.org/wiki/%D0%93%D0%AD%D0%91 - cite_note-153 . Efflux-транспортёр ASCT2 (аланинсеринцистеин-транспортёр) ГЭБ выводит в кровеносное русло L-изомер аспарагиновой кислоты, чьё накопление имеет токсический эффект. Необходимый для формирования NMDA D-изомер поступает в мозг с помощью других транспортных белков (EAAT, SLC1A3, SLC1A2, SLC1A6).

В эпилептогенной ткани в эндотелии и астроцитах представлено большее количество белка Р-гликопротеина по сравнению с нормальной тканью мозга.

На клеточных мембранах эндотелиоцитов располагаются также транспортёры анионов (OAT и OATP). Большое количество Efflux-транспортёров выводят из эндотелиоцитов целый ряд веществ в кровеносное русло.

Для многих молекул до сих пор не ясно выводятся ли они путём активного транспорта (с затратами клеточной энергии) или путём облегчённой диффузии.

4.6 Везикулярный транспорт

  1. Рецептор-опосредованный трансцитоз

С помощью рецептор-опосредованного трансцито́за происходит перенос больших молекул. На обращённой в просвет сосуда поверхности клетки расположены специальные рецепторы для опознавания и связывания определённых веществ. После контакта рецептора с веществом-мишенью происходит их связывание, участок мембраны инвагинируется в полость клетки и образуется внутриклеточный пузырёк - везикула. Затем она перемещается к обращённой к нервной ткани поверхности эндотелиальной клетки, сливается с ней и высвобождает связанные вещества. Таким образом во внеклеточное пространство мозга переносятся состоящий из 679 аминокислот белок трансферрин массой 75,2 кДа, липопротеины низкой плотности из которых образуется холестерин, инсулин пептидные гормоны.

  1. Абсорбцио-опосредованный трансцитоз

Один из подвидов везикулярного транспорта. Отмечается «прилипание» ряда положительно заряженных веществ (катионов) к отрицательно заряженной клеточной мембране с последующем образованием везикулярного пузырька и его переносом к противоположной поверхности клетки. Данный вид транспорта также называется катионным. Он проходит относительно быстрее рецептор-опосредованного трансцитоза.

  1. Области мозга без гематоэнцефалического барьера

ГЭБ имеется в капиллярах большинства, но не всех областей мозга. В 6 анатомических образованиях мозга ГЭБ отсутствует:

    Самое заднее поле ромбовидной ямки (дна IV желудочка) - располагается между треугольником блуждающего нерва с окаймляющим его самостоятельным канатиком и бугорком тонкого ядра

    Шишковидное тело

    Нейрогипофиз

    Прикреплённая пластинка - эмбриональный остаток стенки конечного мозга, покрывающий верхнюю поверхность таламуса. Медиально она истончается, образует извитую пластинку - сосудистую ленту

    Субфорника́льный орган

    Субкомиссура́льный орган

Данная гистологическая особенность имеет своё обоснование. Так например, нейрогипофиз выделяет в кровь гормоны, которые не могут пройти через ГЭБ, а нейроны улавливают в крови наличие токсических веществ и стимулируют рвотный центр. Защитным барьером соседней с данными образованиями мозговой ткани является скопление таницитов. Они представляют собой клетки эпендимы с плотными контактами.

  1. Повреждения гематоэнцефалического барьера

Повреждения ГЭБ у человека наблюдается при целом ряде заболеваний.

    Синдром дефицита белка GLUT-1

Синдром дефицита белка GLUT-1 - редкое аутосомно-доминантное наследственное заболевание, при котором отмечается нарушение синтеза белка GLUT-1, который ответственен за проницаемость ГЭБ для глюкозы и аскорбиновой кислоты. Заболевание проявляется в раннем детском возрасте. Недостаток поступления в ткань мозга глюкозы вызывает развитие микроцефалии, психомоторных нарушений, атаксии и целого ряда других неврологических расстройств.

    Наследственная мальабсорбция фолиевой кислоты

Наследственная мальабсорбция фолиевой кислоты - редкое аутосомно-рецессивное наследственное заболевание, при котором отмечается недостаток синтеза белка, обеспечивающего проницаемость ГЭБ для фолиевой кислоты.

    Сахарный диабет

Сахарный диабет является заболеванием, при котором возникает целый ряд функциональных и структурных изменений различных органов и тканей организма. Также отмечаются значительные изменения ГЭБ, которые проявляются в физико-химической перестройке мембраны эндотелиальных клеток и плотных контактов между ними.

    Рассеянный склероз

Рассеянный склероз - хроническое прогрессирующее заболевание нервной системы, при котором отмечается преимущественное поражение белка миелина ткани мозга. Сосуды мозга здоровых людей непроницаемы для клеток крови, в том числе иммунных клеток. У больных рассеянным склерозом происходит миграция активированных Т-лимфоцитов в паренхиму мозга через ГЭБ, повышается уровень провоспалительных цитокинов - g-интерферона, ФНО-a, ИЛ-1 и других; активируются В-лимфоциты. В результате начинают синтезироваться антитела к белку миелину, что приводит к формированию очагов воспалительной демиелинизации.

    Ишемический инсульт

Ишемический инсульт - острое нарушение мозгового кровообращения, обусловленное недостаточностью поступления крови к участкам центральной нервной системы. Ишемический инсульт приводит к высвобождению оксидантов, протеолитических ферментов и цитокинов в ткани мозга, что в итоге вызывает развитие цитотоксического отёка и изменение проницаемости ГЭБ. В результате запускается процесс трансэндотелиальной миграции лейкоцитов в ткань мозга, которые вызывают поражение здоровых клеток нервной ткани.

    Бактериальная инфекция центральной нервной системы

Лишь немногие попадающие в кровь патогенные микроорганизмы способны проникать через ГЭБ. К ним относятся менингококки (лат. Neisseria meningitidis ), некоторые виды стрептококков - в том числе пневмококки (лат. Streptococcus pneumoniae ), гемофильная палочка (лат. Haemophilus influenzae ), листерии, кишечные палочки (лат. Escherichia coli ) и ряд других. Все они могут вызывать воспалительные изменения как мозга - энцефалит, так и его оболочек - менингит. Точный механизм проникновения этих патогенов через ГЭБ до конца не изучен, однако показано, что воспалительные процессы оказывают влияние на этот механизм. Так, воспаление, вызванное листериями, может привести к тому, что ГЭБ становится проницаемым для данных бактерий. Прикрепившись к эндотелиоцитам капилляров мозга, листерии выделяют целый ряд липополисахаридов и токсинов, которые в свою очередь воздействуют на ГЭБ и делая его проницаемым для лейкоцитов. Проникшие в ткань мозга лейкоциты запускают воспалительный процесс в результате которого ГЭБ пропускает и бактерии.

Пневмококки секретируют фермент группы гемолизинов, который образует поры в эндотелии, через которые и проникает бактериальный агент.

Кроме бактерий через ГЭБ в ткань мозга могут проникать некоторые вирусы. К ним относятся цитомегаловирус, вирус иммунодефицита человека (ВИЧ) и Т-лимфотропный вирус человека (HTLV-1).

    Опухоли головного мозга

Внутримозговые опухоли головного мозга (глиобластомы, метастазы в мозге и др.) выделяют целый ряд веществ, которые дезинтегрируют работу ГЭБ и нарушают его избирательную проницаемость. Такое повреждения гематоэнцефалического барьера вокруг опухоли может вызвать вазогенный отёк мозга.

  1. Проницаемость гематоэнцефалического барьера для антибактериальных препаратов

ГЭБ избирательно проницаем для различных лекарственных веществ, что учитывается в медицине при назначении препаратов для лечения заболеваний центральной нервной системы (ЦНС). Такие препараты должны проникать в ткань мозга к клеткам-мишеням. Также имеет значение то, что при инфекционно-воспалительных заболеваниях ЦНС проницаемость ГЭБ повышается, и через него могут проходить те вещества, для которых он в нормальном состоянии служил непреодолимой преградой. Особенно актуально это для антибактериальных препаратов.

  1. Гемато-ликворный барьер

Кроме гемато-энцефалического барьера существует также гемато-ликворный, который ограничивает центральную нервную систему от кровеносного русла. Он образован эпителиальными клетками с плотными контактами выстилающими сосудистое сплетение желудочков мозга . Гемато-ликворный барьер также имеет свою роль в поддержании гомеостаза мозга. Через него из крови в омывающую мозг спинномозговую жидкость поступают витамины, нуклеотиды и глюкоза. Общий вклад гемато-ликворного барьера в процессы обмена между мозгом и кровью невелик. Суммарная поверхность гемато-ликворного барьера сосудистых сплетений желудочков мозга приблизительно в 5000 раз меньше в сравнении с площадью гемато-энцефалического.

Кроме гематоэнцефалического и гематоликворного барьеров в организме человека существуют гематоплацента́рный, гемато-тестикуля́рный, гемато-клубо́чковый, гемато-ретина́льный, гемато-ти́мусный и гемато-лёгочный барьеры.

Литература

    Агаджанян Н. А. , Торшин, В. И. , Власова В. М. Основы физиологии человека - Учебник для студентов вузов, обучающихся по медицинским и биологическим специальностям. 2-е издание, исправленное. - М. : РУДН, 2001. - 408с.

    Покровского В.М., Коротько Г.Ф., Физиология человека: Учебник - 2-е изд., перераб. и доп. - М.: Медицина, 2003. - 656 с - (Учеб. лит. Для студ. мед. вузов).

Гематоэнцефалический барьер (от латинского слова - Repagula haematoencephalica и греческого слова - Haima - кровь и encephalon; en - в + kephale - голова) представляет собой комплексный физиологический механизм, который содержится в центральной нервной системе на границе между нервной тканью и кровью и регулирует поступление из крови в спинномозговую жидкость и нервную ткань циркулирующих в крови веществ.

Термин гематоэнцефалический барьер мозга предложил Л. Штерн в 1921 году.

Гематоэнцефалический барьер мозга и гипоталамуса принадлежит к внутренним, или гистогематическим барьерам, которые отделяют среду органов от универсальной внутренней среды - крови. Особые условия, в которых находится центральная нервная система относительно доступа к ней различных веществ, которые поступают в общую циркуляцию, отмечали отдельные исследователи. Они отмечали, что вещества, которые не вызывают никакого эффекта при введении их в общую циркуляцию, обусловливают появление различных церебральных симптомов при введении непосредственно в цереброспинальную жидкость.

До последнего времени основным методом изучения функций гематоэнцефалического барьера головного мозга и гипоталамуса было применение трипановой сини или других веществ, наличие которых в центральной нервной системе могла быть обнаружена по цветной реакции (фероцианистый натрий, йодистый калий и т.д.) или физиологическим эффектом (например, кураре).

В последние годы для изучения гематоэнцефалического барьера широко применяют новые методы исследования:

  • изотопный анализ
  • гистологическая химия
  • спектрофотометрия

Эти методы дают возможность количественно оценить проницаемость гематоэнцефалического барьера для различных химических веществ и его изменение в зависимости от состояния организма и влияния на него химических, физических и биологических, а также патологических факторов.

Гематоэнцефалический барьер гипоталамуса и головного мозга имеет две основные функции :

  • защитную, которая заключается в задержке доступа крови к нервной ткани различных веществ, которые могут повредить центральную нервную систему
  • регулирующую, которая заключается в регулировании состава цереброспинальной жидкости и сохранении ее устойчивости

Защитная роль гематоэнцефалического барьера мозга и гипоталамуса оказывается как в эксперименте, так и в клинической физиологии и патологии и обеспечивает особое положение, в котором находится центральная нервная система по сравнению с другими органами по отношению доступа к ней различных циркулирующих в крови веществ.

При введении в кровь кислых красок происходит окрашивание всех органов, за исключением спинного и головного мозга (окрашиваются только некоторые участки мозга, лишенные гематоэнцефалического барьера).

Введение трипановой сини в кровь обычно не сопровождается никакими явлениями со стороны центральной нервной системы благодаря защитной функции мозгового и гипоталамического гематоэнцефалического барьера.

Введение этих красителей, даже в небольших количествах, непосредственно в мозг или его желудочки, то есть в обход гематоэнцефалическому барьеру, вызывает немедленную появление симптомов тяжелого токсического поражения центральной нервной системы, нередко приводит к смерти. Те же закономерности проявляются и в отношении присущих организму веществ. При желтухе различного происхождения окрашиваются все органы и ткани, за исключением органов центральной нервной системы. Единственным случаем желтоватого окрашивания нервной ткани с тяжелыми клиническими симптомами являются ядерная желтуха новорожденных, при которой происходит окраска подкорковых ядер, что обусловлено неполным развитием гематоэнцефалического барьера гипоталамуса. Регуляторной функцией гематоэнцефалического барьера головного мозга определяется состав цереброспинальной жидкости - всей жидкости, образующейся в центральной нервной системы и циркулирует в ее пределах.

Благодаря регуляторной функции гематоэнцефалический барьер состав цереброспинальной жидкости остается постоянным даже при изменении состава крови. Регуляторная и защитная функции гематоэнцефалического барьера гипоталамуса имеют исключительное значение для нормального протекания физиологических процессов, так как высокая степень развития нервных элементов, их большая чувствительность к изменениям цереброспинальной жидкости (химического или биологического характера) требуют особенно тщательной защиты относительного постоянства состава этой жидкости.

Характерным свойством гематоэнцефалического барьера гипоталамуса есть своеобразная селективная проницаемость не только по отношению сложных веществ, которые вводятся в кровь, но и по веществ, образующихся в самом организме (например. метаболитов - гормонов и гормоноподобных веществ, медиаторов, ферментов). Эта селективность более выражена по переходу веществ из крови в цереброспинальную жидкость и органов центральной нервной системы, чем обратного перехода с цереброспинальной жидкости в кровь.

Гематоэнцефалический барьер головного мозга действует подобно селективному фильтру в направлении кровь - цереброспинальная жидкость и вроде своеобразного предохранительного клапана - в направлении цереброспинальная жидкость - кровь. Функция гематоэнцефалического барьера приобретает особое значение при наличии патологии. Его селективная проницаемость, которая сохраняется и при развитии общих заболеваний, защищает центральную нервную систему от воздействия различных токсических веществ, циркулирующих в крови. С нарушением функции гематоэнцефалического барьера связывают механизм развития некоторых патологических синдромов.

Локализация различных поражений центральной нервной системы в определенной степени зависит от проницаемости гематоэнцефалического барьера мозга для соответствующих патогенных агентов. Так, локализация поражений при различных нейроинфекциях, в частности при полиомиелите, определяется проницаемостью гематоэнцефалического барьера для патогенных агентов. В то же время сохранение нормальной непроницаемости гематоэнцефалического барьера для ряда лекарств имеет отрицательное значение при лечении некоторых заболеваний. В частности, различные антитела, существующих в норме и образуются при различных инфекционных заболеваниях, через гематоэнцефалический барьер гипоталамуса не проходят. Не проходят сквозь него много лекарственных веществ, поэтому иногда нужно вводить лекарственного препарата непосредственно в цереброспинальной жидкости. Эти обстоятельства обусловили необходимость поиска методов воздействия на гематоэнцефалический барьер с целью повышения его проницаемости для лекарственных веществ.

Организм человека и высших животных обладает рядом специ­фических физиологических систем, обеспечивающих приспособление (адаптацию) к постоянно изменяющимся условиям существования. Этот процесс тесно связан с необходимостью обязательного сохра­нения постоянства существенных физиологических параметров, внутренней среды организма, физико-химического состава тканевой жидкости межклеточного пространства.

Среди гомеостатических приспособительных механизмов, при­званных защитить органы и ткани от чужеродных веществ и регули­ровать постоянство состава тканевой межклеточной жидкости, веду­щее место занимает гематоэнцефалический барьер.

Термин «гематоэнцефалический барьер» был предложен Л.С.Штерн и Р.Готье в 1921 г. Гематоэнцефалический барьер (ГЭБ) принадлежит к числу внутренних или гистогематических барьеров которые отгораживают непосредственно питательную среду отдельных органов от универсальной внутренней среды – крови. ГЭБ – это комплексный физиологический механизм, находящийся в центральной нервной системе на границе между кровью и нервной тканью, и регулирующий поступление из крови в цереброспинальную жидкость и нервную ткань циркулирующих в крови веществ. ГЭБ участву­ет в регулировании состава цереброспинальной жидкости (ЦСЖ) (Агаджанян Н. А., Торшин, В. И., 2001).

В основных положениях о ГЭБ подчеркивается следующее:

Гематоэнцефалический барьер является в большей степени не анатомическим образованием , а функциональным понятием, ха­рактеризующим определенный физиологический механизм;

Проникновение веществ в мозг осуществляется главным образом не через ликворные пути, а через кровеносную систему на уровне капилляр - нервная клетка;

Как лю­бой существующий в организме физиологический механизм, гема­тоэнцефалический барьер находится под регулирующим влиянием нервной и гуморальной систем;

Среди управляющих гематоэнцефалическим барьером факторов ведущим является уровень деятель­ности и метаболизма нервной ткани.

2. Особенности морфологического строения

Капилляры мозга отличаются тем, что эндотелиальные клетки не обладают ни порами, ни фенестрами. Соседние клетки черепицеобразно накладываются одна на другую. В области стыков клеток находятся замыкательные пластинки. Базальная мембрана имеет трехслойное строение и содержит мало перицитов. Главное отличие этой структуры – наличие глиальных элементов, расположенных между кровеносным сосудом и нейроном. Отростки астроцитов формируют своеобразный футляр вокруг капилляра, это исключает проникновение веществ в мозговую ткань, минуя глиальные элементы. Имеются перинейрональные глиоциты, находящиеся в тесном контакте с нейронами. В состав ГЭБ входит внеклеточное пространство, заполненное основным аморфным веществом углеводно-белковой природы (мукополисахариды и мукопротеины).

3. Функции гематоэнцефалического барьера

Гематоэнцефалический барьер регулирует проникновение из кро­ви в мозг биологически активных веществ, метаболитов, химических веществ, воздействующих на чувствительные структуры мозга, препятствует поступлению в мозг чужеродных веществ, микроорганиз­мов, токсинов.

Основной функцией, характеризующей гематоэнцефалический барьер, является проницаемость клеточной стенки. Необходимый уровень физиологической проницаемости, адекватный функциональ­ному состоянию организма, обусловливает динамику поступления в нервные клетки мозга физиологически активных веществ.

Функциональная схема гематоэнцефалического барьера включает в себя наряду с гистогематическим барьером нейроглию и систему ликворных пространств (Росин Я. А. 2000). Гистогематический барьер имеет двойную функцию: регуляторную и защитную. Регуляторная функция обеспечивает относительное постоянство физи­ческих и физико-химических свойств, химического состава, физи­ологической активности межклеточной среды органа в зависимости от его функционального состояния. Защитная функция гистогематического барьера заключается в защите органов от поступления чужеродных или токсичных веществ эндо- и экзогенной природы.

Ведущим компонентом морфологического субстрата гематоэнце­фалического барьера, обеспечивающим его функции, является стенка капилляра мозга. Существуют два механизма проникновения веще­ства в клетки мозга: через цереброспинальную жидкость, которая служит промежуточным звеном между кровью и нервной или глиальной клеткой, которая выполняет питательную функцию (так называемый ликворный путь), и через стенку капилляра. У взрослого организма основным путем движения вещества в нервные клетки является гематогенный (через стенки капилляров); ликворный путь становится вспомогательным, дополнительным.

Проницаемость гематоэнцефалического барьера зависит от фун­кционального состояния организма, содержания в крови медиаторов, гормонов, ионов. Повышение их концентрации в крови приводит к снижению проницаемости гематоэнцефалического барьера для этих веществ.

Функциональная система гематоэнцефалического барьера представляется важным компонентом нейрогуморальной регуляции. В частности, через гематоэнцефалический барьер реализуется прин­цип обратной химической связи в организме. Именно таким образом осуществляется механизм гомеостатической регуляции состава внут­ренней среды организма.

Регуляция функций гематоэнцефалического барьера осуществ­ляется высшими отделами ЦНС и гуморальными факторами. Зна­чительная роль в регуляции отводится гипоталамо-гипофизарной адреналовой системе. В нейрогуморальной регуляции гематоэнце­фалического барьера важное значение имеют обменные процессы, в частности в ткани мозга. При различных видах церебральной патологии, например травмах, различных воспалительных пораже­ниях ткани мозга, возникает необходимость искусственного сниже­ния уровня проницаемости гематоэнцефалического барьера. Фарма­кологическими воздействиями можно увеличить или уменьшить про­никновение в мозг различных веществ, вводимых извне или циркулирующих в крови (Покровского В.М., Коротько Г.Ф., 2003).

4. Транспорт веществ через гематоэнцефалический барьер

Гематоэнцефалический барьер не только задерживает и не пропускает целый ряд веществ из крови в вещество мозга, но и выполняет противоположную функцию - транспортирует необходимые для метаболизма ткани мозга вещества. Гидрофобные вещества и пептиды проникают в мозг либо с помощью специальных транспортных систем, либо через каналы клеточной мембраны. Для большинства других веществ возможна пассивная диффузия.

Существует несколько видов транспорта веществ через ГЭБ

4.1 Межклеточный транспорт

В капиллярах периферических органов и тканей, транспорт веществ осуществляется в основном через фенестра́ции сосудистой стенки и межклеточные промежутки. В норме между клетками эндотелия сосудов мозга такие промежутки отсутствуют. В связи с этим питательные вещества проникает в мозг лишь через клеточную стенку. Вода, глицерин и мочевина могут свободно диффундировать через плотные контакты между эндотелиальными клетками ГЭБ.

4.2 Канальцевая проницаемость

Небольшие полярные вещества, например молекулы воды, с трудом могут диффундировать через гидрофобные отделы клеточной мембраны эндотелиоцита. Несмотря на это доказана высокая проницаемость ГЭБ для воды.

В клеточной мембране эндотелиоцита располагаются специальные гидрофильные каналы - аквапоры. В эндотелии периферических сосудов они образованы белком аквапорином-1 (AQP1), экспрессия которого ингибируется астроцитами в клетках сосудов мозга. На поверхности мембран клеток капиллярной сети мозга представлены в основном аквапорин-4 (AQP4) и аквапорин-9 (AQP9).

Через аквапоры происходит регуляция содержания воды в веществе мозга. Они делают возможным быструю диффузию воды как в направлении мозга так и в направлении сосудистого русла в зависимости от осмотического градиента концентраций электролитов. Для глицерина, мочевины и ряда других веществ на поверхности клеточных мембран формируются собственные каналы - акваглицеропорины. В ГЭБ они представлены в основном белком аквапорином-9, который также образует аквапоры.

Процесс транспорта молекул через специализированные каналы осуществляется быстрее активного переноса с помощью специальных белков транспортёров. В то же время различные биологически активные вещества могут активировать или инактивировать транспортные каналы расположенные на клеточных мембранах.

4.3 Свободная диффузия

Самой простой формой транспорта через ГЭБ является свободная (или пассивная) диффузия. Она может осуществляться как через клеточные мембраны эндотелиоцитов, так и через плотные межклеточные контакты. Для диффузии веществ, движущей силой является разница концентраций. Диффузия веществ пропорциональна градиенту концентраций в кровеносном русле и ткани мозга. Для неё не требуется затрат клеточной энергии.