Легкие газообмен в легких и других тканях. Для чего мы дышим? Характеристика отдельных типов гипоксии


Физиология дыхания

Общая характеристика дыхательной системы

Дыхание – жизненно важная функция организма,обеспечивающая газообмен между клетками организма и внешней средой. Для осуществления энергетических процессов клетки потребляют кислород и выделяют диоксид углерода. Если эти процессы остановятся максимум на 5 минут – наступят необратимые изменения в клетках. Особенно чувствительны к недостатку кислорода клетки коры больших полушарий головного мозга и сердца.

Дыхание включает пять взаимосвязанных процессов:

1. Внешнее дыхание – обмен воздуха между внешней средой и альвеолами лёгких (осуществляется посредством актов вдоха и выдоха).

2. Газообмен в лёгких – диффузия газов между лёгочными альвеолами и кровью, в результате венозная кровь превращается в артериальную.

3. Транспорт газов (кислорода и диоксида углерода) кровью.

4. Газообмен в тканях – диффузия кислорода из капилляров большого круга кровообращения в клетки, а углекислого газа – из клеток в кровь.

5. Тканевое дыхание – окислительные процессы в клетках.

Некоторые сведения о строении органов дыхания

К органам дыхания относятся лёгкие, трахея, гортань и носовые ходы. Газообмен между кровью и воздухом происходит только в альвеолах лёгких, остальные пути называются воздухоносными. К последним относятся верхние воздухоносные пути – от носовых ходов до голосовой щели, и нижние – от голосовой щели до альвеол.

Поскольку в воздухоносных путях газообмен не происходит, их называют «вредным», или «мёртвым» пространством – по аналогии с поршневыми механизмами. Однако они имеют большое значение, так как, проходя по ним, воздух согревается, увлажняется и очищается от макро- и микрочастиц (пыли, копоти, микроорганизмов). Здесь образуется много слизи, работает мерцательный эпителий. В подслизистом слое имеется много лимфоцитов, макрофагов, эозинофилов, осуществляющих защиту организма от проникновения из внешней среды патогенной микрофлоры. Воздухоносные пути являются рецептивными зонами защитных дыхательных путей – чихания и кашля.

Лёгкие расположены в грудной полости, образованной двумя листками плевры – висцеральным и париетальным. Висцеральный листок плотно срастается с лёгкими, а также с другими органами грудной полости. Париетальный листок срастается с рёберной стенкой и диафрагмой. Между этими листками плевры находится узкая капиллярная щель, её называют межплевральной, или плевральной полостью. Она заполнена небольшим количеством серозной жидкости. Строго говоря, межплевральная щель и есть грудная полость. Давление в межплевральной полости ниже атмосферного, то есть отрицательное. Поэтому лёгкие постоянно заполнены воздухом и растянуты – как при вдохе, так и при выдохе.

Рис. 9. Строение лёгкого: 1 – трахея;

2 – правый бронх; 3 – левый бронх; 4 – альвеолы.

Внутренняя поверхность альвеол покрыта особым веществом, состоящим из фосфолипидов, белков и гликопротеидов – сурфактантом . Сурфактант уменьшает поверхностное натяжение альвеол, играет важную роль в предотвращении спадения альвеол при выдохе и облегчает их растяжение при вдохе. Кроме того, обмен газов через стенку альвеол происходит лишь при условии их растворения в сурфактанте.

Внешнее дыхание

Внешнее дыхание, или вентиляция лёгких – это газообмен между альвеолами лёгких и окружающим воздухом. Оно складывается из вдоха и выдоха. Лёгкие расширяются при вдохе и спадаются при выдохе в результате изменения давления в грудной полости.

Грудная полость – это узкая капиллярная щель между париетальным и висцеральным листками плевры, заполненная серозной жидкостью. До рождения головки рёбер зафиксированы у тел позвонков – в одной точке. Рёбра опущены, грудная клетка сжата, давление в грудной полости равно атмосферному. В момент первого вдоха новорожденного рёбра приподнимаются, и рёберные бугорки фиксируется на поперечно-остистом отростке позвонков – во второй точке фиксации. В результате объём грудной полости увеличивается, а давление в ней снижается, и становится ниже атмосферного, или отрицательным. Во время выдоха рёбра сохраняют новое положение, грудная полость остается несколько растянутой и давление в ней остается отрицательным.

Вдох

Последовательностьпроцессов при вдохе следующая:

1. Сокращается группа вдыхательных (инспираторных) мышц, основными из которых являются наружные межреберные мышцы и диафрагма. При этом органы брюшной полости, сдавленные диафрагмой, оттесняются в каудальном направлении, рёбра описывают дугу кверху, а грудная кость немного опускается.

2. Изменения положения рёберной клетки и диафрагмы приводит к увеличению объёма грудной полости.

3. Увеличение объёма грудной полости приводит к снижению в ней давления, в результате лёгкие растягиваются, пассивно следуя за изменениями объёма грудной полости

4. В альвеолах давление снижается и в них засасывается воздух.

При усиленном дыхании участвуют дополнительные респираторные мышцы, которые при сокращении ещё больше увеличивают объём грудной полости и снижают в ней давление. Поэтому вдох оказывается более глубоким, и в лёгкие входит больше воздуха.

Выдох

Выдох начинается с расслабления мышц-инспираторов, вследствие чего грудная клетка возвращается в исходное положение. Давление в грудной полости при этом повышается, не достигая, однако, атмосферного. В лёгких, однако, давление становится выше атмосферного, что приводит к вытеснению воздуха и уменьшению их объёма. Сжатию лёгких во время выдоха способствует эластическая тяга паренхимы. Включение в работу мышц-экспираторов (в основном, внутренних межреберных мышц и мышц живота) необходимо только при усиленном, форсированном дыхании.

Изменения давления в грудной (то есть плевральной) полости во время дыхания следующие:

1. При спокойном вдохе оно меньше атмосферного (то есть отрицательное) на 30 мм рт. ст., при спокойном выдохе – на 5 – 8. При очень глубоком вдохе (например, перед чиханием, или при мышечной нагрузке) – становится на 60-65 мм рт.ст.ниже атмосферного, а при полном, максимальном выдохе (в конце чихания, например), – оно на 1,5 – 2 мм ниже атмосферного.

2. При изменениях атмосферного давления в окружающей среде давление в грудной полости также изменяется, но всё равно остается отрицательным на указанные величины.

Таким образом, давление в плевральной полости всегда отрицательное . При нарушении целостности грудной полости (проникающее ранение или разрыв поверхностных альвеол) атмосферный воздух засасывается в плевральную полость. Такое состояние называется пневмотораксом. Давление в грудной полости выравнивается с атмосферным, лёгкие спадаются за счёт эластичной тяги, и дыхание становится невозможным.

Количество дыхательных движений у животных в 1 минуту – видовой признак. У лошадей в состоянии покоя оно составляет 8 – 16, у коров – 10 – 30, у свиней – 8 – 18, у собак –10 – 30, у кошек 10 – 25, у морских свинок – 100 – 150.

Вентиляция лёгких

При спокойном дыхании животные вдыхают и выдыхают сравнительно небольшое количество воздуха, именуемое дыхательным (респираторным) объёмом: у лошади и коровы он составляет – 5 – 6, у крупных собак – около 0,5 литра.

При максимальном вдохе животное может вдохнуть больше – это дополнительный объём вдоха (у крупных животных он колеблется от 10 до 12, у крупных собак – равняется 1 литру), а после спокойного выдоха – дополнительно столько же выдохнуть (резервный объём выдоха ). Сумма дыхательного, дополнительного объёма вдоха и дополнительного объёма выдоха составляет жизненную ёмкость лёгких . Дополнительные объёмы используются при усилении дыхания – например, во время физической работы.

После спокойного выдоха в лёгких ещё остается достаточно много воздуха – это альвеолярный объём . Он состоит из резервного объёма выдоха и остаточного воздуха, который выдохнуть из лёгких не представляется возможным. Это связано с тем, что и после самого глубокого выдоха в грудной полости сохраняется отрицательное давление, и легкие постоянно заполнены воздухом. Это обстоятельство даже используется в судебно-ветеринарной экспертизе в случаях, когда нужно установить, был ли плод мёртворожденным или он погиб после рождения (в первом случае – в лёгких нет воздуха, во втором – новорожденный дышал перед смертью и воздух попал в лёгкие).

Отношение дыхательного объёма к альвеолярному называется коэффициентом лёгочной (альвеолярной) вентиляции. При каждом спокойном вдохе вентилируется примерно 1/6 часть лёгочного объёма, а при усиленном дыхании этот коэффициент возрастает.

Газообмен в лёгких и тканях

Газообмен между альвеолярным воздухом и кровью, а также между кровью и тканями происходит по физическим законам, – путём простой диффузии. Газы переходят через полупроницаемые биологические мембраны вследствие разницы парциальных давлений (давление одного газа в смеси газов) из области более высокого в область более низкого давления. Для газов, растворённых в жидкости (крови) при этом употребляется термин – напряжение.

Для расчёта парциального давления газа необходимо знать его концентрацию в газовой среде и общее давление смеси газов. Так, например, содержание кислорода во вдыхаемом (атмосферном) воздухе составляет 21%, углекислого газа – 0,03%. В альвеолярном воздухе содержание газов несколько другое: соответственно – 14% и 5,5%. Важно отметить, что при спокойном дыхании состав альвеолярного воздуха остаётся постоянным и мало зависит от фазы вдоха или выдоха. Это – своеобразная внутренняя газовая среда организма, обеспечивающая непрерывное обновление газов в крови. Изменения состава альвеолярного воздуха происходит только при сильной одышке или при затруднении (остановке) дыхания.

Давление в альвеолах лёгких ниже атмосферного на величину, создаваемую водяными парами (около 47 мм. рт.ст.).

Таким образом, если внешнее атмосферное давление около 760 мм, то парциальное давление кислорода в альвеолах составляет около 100, а диоксида углерода – 40 мм рт.ст. При изменениях погодных условий, а также в условиях высокогорья, или при погружении в воду парциальное давление газов в альвеолах изменится.

В венозной крови, притекающей к лёгким по лёгочной артерии, напряжение кислорода составляет около 40 мм рт.ст., а диоксида углерода – 46 мм. рт.ст. Следовательно, кислород диффундирует из альвеолярного воздуха в кровь, а диоксид углерода – из крови в альвеолярный воздух.

Азота в воздухе около 80%, он содержится и в альвеолярном воздухе, его парциальное давление больше всех других газов. Однако при обычных колебаниях атмосферного давления азот не растворяется ни в водяных парах альвеол, ни в сурфактанте, поэтому в кровь он не попадает.

К органам подходит артериальная кровь, насыщенная кислородом. Его напряжение составляет около 100 мм рт.ст. Диоксид углерода также содержится в артериальной крови, его напряжение – около 40 мм рт.ст. В клетках содержание диоксида углерода значительно больше, его напряжение доходит до 70 мм рт.ст. Кислород клетки поглощают и используют для окислительных процессов, поэтому его напряжение снижается почти до 0. Таким образом, между притекающей артериальной кровью и тканями органов происходит простая диффузия газов – кислород из крови переходит в ткани, а диоксид углерода – из тканей в кровь.

Транспорт газов кровью

Только небольшая часть кислорода может транспортироваться кровью в растворенном состоянии (0,3 мл газа в 100 мл крови).

Основной транспортной формой кислорода в крови является оксигемоглобин (14 – 20 млв 100 мл крови). Он образуется в результате присоединения к гемоглобину крови кислорода. Установлено, что 1 г гемоглобина (при условии полного его насыщения) может присоединить около 1,34 мл кислорода.

Кислородная ёмкость крови определяется количеством мл кислорода, находящегося в 100 мл крови при максимальном насыщения гемоглобина кислородом. Она зависит от количества гемоглобина в крови. При значительных изменениях атмосферного давления, или же при экстремальных колебаниях газового состава воздуха кислородная ёмкость крови может изменяться.

Транспорт углекислого газа кровью осуществляется в 3-х формах: в виде бикарбонатов натрия и калия (основная форма), в соединении с гемоглобином (карбогемоглобин) и в растворённом состоянии: соответственно доля каждой из форм в процентах составляет – 80, 18 и 2%.

Механизм образования бикарбонатов следующий. Поступающий из тканей в кровь углекислый газ проникает в эритроциты и при участии клеточного фермента карбоангидразы преобразуется в угольную кислоту. Н 2 СО 3 легко диссоциирует с образованием ионов Н + и НСО 3 - . НСО 3 - диффундирует из эритроцитов в плазму крови, взамен в эритроциты из плазмы входят ионы хлора. В результате в плазме крови ионы натрия и калия связывают поступающие из эритроцитов НСО 3 - , образуя бикарбонаты натрия или калия.

Регуляции дыхания

Регуляции дыхания осуществляется рефлекторно, при участии нейро-гуморальных механизмов. В рефлекторной регуляции любой функции участвует нервный центр, получающий информацию от различных рецепторов, и исполнительные органы.

Дыхательный центр представляет совокупность нейронов в различных отделах ЦНС, структурно и функционально связанных между собой. «Ядро» дыхательного центра, находится в области ретикулярной формации продолговатого мозга. Оно состоит из двух отделов: центров вдоха и выдоха. При повреждении этой области мозга дыхание становится невозможным и наступает смерть животного.

Нейроны, входящие в состав вышеназванного ядра, обладают автоматией, т.е. способны к спонтанной (самопроизвольной) деполяризации – возникновению возбуждения. Автоматия той части дыхательного центра, которая расположена в продолговатом мозге, имеет важное значение в автоматическом чередовании вдоха и выдоха. Другие структуры дыхательного центра автоматией не обладают. В продолговатом мозге также замыкаются рефлекторные дуги чихательного и кашлевого рефлексов. При участии данного отдела изменяется внешнее дыхание при изменении газового состава крови.

Из продолговатого мозга импульсы спускаются в спинной мозг. В грудном отделе спинного мозга находятся мотонейроны, иннервирующие межрёберные (дыхательные) мышцы, а в шейной области спинного мозга на уровне 3 – 5-го позвонка расположен центр диафрагмального нерва. Эти нейроны передают возбуждение от центров вдоха и выдоха продолговатого мозга к мышцам, они относятся к соматической нервной системе.

В состав основного дыхательного центра также входят нейроны среднего и промежуточного отдела головного мозга, которые координируют дыхание с другими функциями организма (мышечными сокращениями, глотанием, отрыгиванием, принюхиванием). Кора больших полушарий является высшей инстанцией данного центра, контролирующей работу всех ранее перечисленных структурных образований и обеспечивающей произвольное усиление или урежение дыхания. При обязательном участии коры возникают условнорефлекторные изменения дыхания.

В регуляции дыхания участвуют различные рецепторы – они расположены в лёгких, в кровеносных сосудах, в скелетных мышцах. По природе раздражителей они могут быть механо- и хеморецепторами.

К лёгочным рецепторам относятся рецепторы растяжения и ирритантные рецепторы.

Рецепторы растяжения возбуждаются вследствие растяжения лёгких во время вдоха. Возникший в них поток импульсов устремляется по веточкам блуждающего нерва в центр вдоха, и на высоте вдоха вызывает его торможение. Благодаря этому вдох заканчивается ещё до максимального растяжения лёгких. Спадение лёгких при выдохе также сопровождается раздражением механорецепторов, что приводит к торможению выдоха. Таким образом, механорецепторы лёгких передают информацию в дыхательный центр о степени растяжения или спадения лёгких, что регулирует глубину дыхания и необходимо для автоматического чередования вдоха и выдоха.

Ирритантныерецепторы располагаются в эпителиальном слое воздухоносных дыхательных путей и лёгких. Они реагируют на пыль, действие неприятных или удушающих газов, табачного дыма. При этом возникает чувство першения в горле, кашель, задержка дыхания. Значение этих рефлексов – недопущение в альвеолы вредных газов и пылевых

Хеморецепторы расположены в различных кровеносных сосудах, в тканях и в ЦНС. Они чувствительны к концентрации кислорода, диоксида углерода, водородным ионам. Важнейшим гуморальным раздражителем для дыхательного центра является диоксид углерода. Изменение его концентрации в артериальной крови неизменно ведет к изменению частоты и глубины дыхания: увеличение – к усилению, уменьшение – к ослаблению дыхательной функции. Большое значение в гуморальной регуляции дыхания имеют хеморецепторы синокаротидной и аортальной сосудистых рефлексогенных зон. Очень высока чувствительность к диоксиду углерода нейронов дыхательного центра, расположенных в продолговатом мозге. Таким образом, в организме поддерживается постоянный уровень диоксида углерода и в крови, и в ликворе.

Другим адекватным раздражителем дыхательного центра являетсякислород. Правда, его влияние проявляется в меньшей мере. Это связано с тем, что при обычных колебаниях атмосферного давления у здоровых животных практически весь гемоглобин соединяется с кислородом.

Гуморальная регуляция дыхания имеет важное значение при первом вдохе новорожденного. Во время родов при передавливании пуповины в организме детёныша быстро нарастает концентрация углекислого газа и одновременно развивается кислородная недостаточность. Это приводит к рефлекторному возбуждению дыхательного центра и новорожденный делает свой первый в его жизни вдох.

Активное участие в механизме регуляции дыхания принимают органические кислоты, в частности – молочная кислота, накапливающаяся в крови и в мышцах во время мышечной работы. Эта кислота, являясь более сильной, чем угольная, вытесняет из бикарбонатов крови диоксид углерода, что приводит к повышению возбудимости дыхательного центра и возникновению одышки.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-07-25

Газообмен в легких совершается вследствие диффузии газов через тонкие эпителиальные стенки альвеол и капилляров. Содержание кислорода в альвеолярном воздухе значительно выше, чем в венозной крови капилляров, а углекислого газа меньше. В результате парциальное давление кислорода в альвеолярном воздухе составляет 100- 110 мм рт. ст., а в легочных капиллярах - 40 мм рт. ст. Парциальное давление углекислого газа, наоборот, выше в венозной крови (46 мм рт. ст.), чем в альвеолярном воздухе (40 мм рт. ст.). Вследствие различия парциального давления газов кислород альвеолярного воздуха будет диффундировать в медленно протекающую кровь капилляров альвеол, а углекислый газ - в обратном направлении. Поступившие в кровь молекулы кислорода взаимодействуют с гемоглобином эритроцитов и в виде образовавшегося оксигемоглобина переносятся к тканям.

Газообмен в тканях осуществляется по аналогичному принципу. В результате окислительных процессов в клетках тканей и органов концентрация кислорода меньшая, а углекислого газа большая, чем в артериальной крови. Поэтому кислород из артериальной крови диффундирует в тканевую жидкость, а из нее - в клетки. Движение углекислого газа происходит в противоположном направлении. В результате кровь из артериальной, богатой кислородом, превращается в венозную, обогащенную углекислым газом.

Таким образом, движущей силой газообмена является разность в содержании и, как следствие, парциальном давлении газов в клетках тканей и капиллярах.

Нервная и гуморальная регуляция дыхания .

Дыхание регулируется дыхательным центром, расположенным в продолговатом мозге. Он представлен центром вдоха и центром выдоха. Нервные импульсы, возникающие в этих центрах поочередно, по нисходящим путям доходят до двигательных диафрагмальных и межреберных нервов, управляющих движениями соответствующих дыхательных мышц. Информацию о состоянии органов дыхания нервные центры получают от многочисленных механо- и хеморецепторов, расположенных в легких, воздухоносных путях, дыхательных мышцах.

Изменение дыхания происходит рефлекторно. Оно меняется при болевом раздражении, при раздражении органов брюшной полости, рецепторов кровеносных сосудов, кожи, рецепторов дыхательных путей. При вдыхании паров аммиака, например, раздражаются рецепторы слизистой оболочки носоглотки, что приводит к рефлекторной задержке дыхания. Это важное приспособление, препятствующее попаданию в легкие ядовитых и раздражающих веществ.

Особое значение в регуляции дыхания имеют импульсы, идущие от рецепторов дыхательных мышц и от рецепторов самих легких. От них в большой степени зависит глубина вдоха и выдоха. Это происходит так: при вдохе, когда легкие растягиваются, раздражаются рецепторы в их стенках. Импульсы от рецепторов легких по центростремительным волокнам достигают дыхательного центра, тормозят центр вдоха и возбуждают центр выдоха. В результате дыхательные мышцы расслабляются, грудная клетка опускается, диафрагма принимает вид купола, объем грудной клетки уменьшается и происходит выдох. Поэтому говорят, что вдох рефлекторно вызывает выдох. Выдох, в свою очередь, рефлекторно стимулирует вдох.



В регуляции дыхания принимает участие кора головного мозга, обеспечивая тончайшее приспособление дыхания к потребностям организма в связи с изменениями условий внешней среды и жизнедеятельности организма.

Вот примеры влияния коры больших полушарий на дыхание. Человек может на время задержать дыхание, по своему желанию менять ритм и глубину дыхательных движений. Влияниями коры головного мозга объясняются предстартовые изменения дыхания у спортсменов - значительное углубление и учащение дыхания перед началом соревнования. Возможна выработка условных дыхательных рефлексов. Если к вдыхаемому воздуху добавить около 5-7% углекислого газа, который в такой концентрации учащает дыхание, и сопровождать вдох стуком метронома или звонком, то через несколько сочетаний один только звонок или стук метронома вызовет учащение дыхания.

Защитные дыхательные рефлексы - чихание и кашель - способствуют удалению попавших в дыхательные пути инородных частиц, излишков слизи и т. д.

Гуморальная регуляция дыхания заключается в том, что увеличение в крови углекислого газа повышает возбудимость центра вдоха благодаря получению нервных импульсов от хеморецепторов, расположенных в крупных артериальных сосудах, стволе мозга.



В настоящее время установлено, что углекислый газ оказывает не только прямое возбуждающее действие на дыхательный центр. Накопление углекислого газа в крови вызывает раздражение рецепторов в кровеносных сосудах, несущих кровь к голове (сонные артерии), и рефлекторно возбуждает дыхательный центр. Подобным образом действуют и другие кислые продукты, поступающие в кровь, например молочная кислота, содержание которой в крови увеличивается во время мышечной работы. Кислоты увеличивают концентрацию водородных ионов в крови, что вызывает возбуждение дыхательного центра.

Гигиена дыхания .

Органы дыхания являются воротами для проникновения болезнетворных микроорганизмов, пыли и других веществ в организм человека. Значительная часть мелких частиц и бактерий оседает на слизистой оболочке верхних дыхательных путей и удаляется из организма при помощи ресничного эпителия. Часть микроорганизмов все же поступает в дыхательные пути и легкие и может вызвать различные заболевания (ангину, грипп, туберкулез и др.). Для предупреждения заболеваний органов дыхания необходимо регулярно проветривать жилые помещения, содержать их в чистоте, совершать продолжительные прогулки на свежем воздухе, избегать посещения многолюдных мест особенно во время эпидемий респираторных заболеваний.

Большой вред органам дыхания наносит курение табачных изделий - как самому курильщику, так и окружающим (пассивное курение).Токсичные вещества табачного дыма отравляют организм, являются причиной возникновения различных заболеваний (бронхита, туберкулеза, астмы, рака легких и др.).

Туберкулез - инфекция известная с глубокой древности и названная "чахоткой", так как заболевшие чахли на глазах, увядали. Это заболевание является хронической инфекцией определенным типом бактерии (Mycobacterium tuberculosis), которая обычно поражает легкие. Инфекция туберкулеза передается не так легко, как другие инфекционные болезни дыхательных путей, поскольку для того, чтобы достаточное число бактерий попали в легкие, необходимо повторное и длительное воздействие частиц, выделяемых при кашле или чихании больного. Существенным фактором риска является нахождение в переполненных помещениях с плохими санитарными условиями и частый контакт с больными туберкулезом.

Туберкулезные микобактерии обладают значительной устойчивостью во внешней среде. В темном месте в мокроте они могут сохранять жизнеспособность в течение многих месяцев. Под действием прямых солнечных лучей микобактерии гибнут через несколько часов. Они чувствительны к высокой температуре, активированным растворам хлорамина, хлорной извести. Как лечить народными средствами этот недуг смотрите тут.

Инфекция имеет две стадии. Сначала бактерии попадают в легкие, где большая их часть уничтожается иммунной системой. Бактерии, которые не уничтожаются, захватываются иммунной системой в твердые капсулы, называемые туберкулы, которые состоят из множества различных клеток. Бактерии туберкулеза не могут вызвать повреждения или симптомы, пока находятся в туберкулах, и у многих людей болезнь никогда не развивается. Только у небольшой части (приблизительно у 10 процентов) инфицированных людей болезнь переходит во вторую, активную стадию.

Активная стадия болезни начинается, когда бактерии выходят из туберкул и поражают другие участки легких. Бактерии могут также попасть в кровь и лимфатическую систему и распространиться по всему организму. У некоторых людей активная стадия наступает через несколько недель после начального инфицирования, но в большинстве случаев вторая стадия начинается только через несколько лет или десятилетий. Такие факторы, как старение, ослабленная иммунная система и плохое питание, увеличивают риск того, что бактерии выйдут за пределы туберкул. Чаще всего при активном туберкулезе бактерии уничтожают ткань легкого и сильно затрудняют дыхание, но болезнь может также может затрагивать и другие части организма, включая мозг, лимфатические узлы, почки и желудочно-кишечный тракт. Если туберкулез не лечить, он может быть смертельным.

Иногда болезнь называют белой чумой из-за пепельного цвета лица ее жертв. Туберкулез является ведущей причиной смерти во всем мире, несмотря на развитие эффективноголечения

Препаратами.

Источником инфекции является больной человек, больные домашние животные и птицы. Наиболее опасны больные открытой формой туберкулеза легких , выделяющие возбудителей с мокротой, каплями слизи при кашле, разговоре и т. д. Менее опасны в эпидемиологическом отношении больные с туберкулезными поражениями кишечника, мочеполовых и других внутренних органов.

Среди домашних животных наибольшее значение как источник инфекции имеет крупный рогатый скот, выделяющий возбудителей с молоком, и свиньи.

Пути передачи инфекции различны. Чаще заражение происходит капельным путем через мокроту и слюну, выделяемые больным при кашле, разговоре, чиханье, а также воздушно-пылевым путем.

Немаловажную роль играет и контактно-бытовой путь распространения инфекции как непосредственно от больного (испачканные мокротой руки), так и через различные предметы обихода, загрязненные мокротой. Пищевые продукты может инфицировать больной туберкулезом; кроме того, инфекция может передаваться от больных туберкулезом животных через их молоко, молочные продукты и мясо.

Восприимчивость к туберкулезу абсолютная. Течение инфекционного процесса зависит от состояния организма и его сопротивляемости, питания, жилищно-бытовой обстановки, условий труда и пр.

Газообмен в легких. Вдыхаемый человеком воздух и выдыхаемый сильно различаются по составу. В атмосферном воздухе содержание кислорода доходит до 21%, углекислого газа - 0,03-0,04%. В выдыхаемом воздухе количество кислорода снижается до 16%, зато углекислого газа становится больше - 4-4.5%. Что же происходит с воздухом в легких?

Вы помните, что альвеолы легких образуют огромную поверхность. Все альвеолы окутаны кровеносными капиллярами, в которые по малому кругу кровообращения поступает венозная кровь из сердца. Стенки альвеол и капилляров очень тонкие. Кровь, которая попадает в легкие, бедна кислородом и насыщена углекислым газом. Воздух в легочных альвеолах, наоборот, богат кислородом, а углекислого газа в нем значительно меньше. Поэтому в соответствии с законами осмоса и диффузии кислород из легочных альвеол устремляется в кровь, где соединяется с гемоглобином эритроцитов. Кровь приобретает алую окраску. Углекислый газ из крови, где он содержится в избытке, проникает в легочные альвеолы. Из венозной крови в легочные альвеолы выделяется также вода, которая в виде пара при выдохе удаляется из легких.

Газообмен в тканях. В органах нашего тела постоянно происходят окислительные процессы, на которые расходуется кислород. Поэтому концентрация кислорода в артериальной крови, которая поступает в ткани по сосудам большого круга кровообращения, больше, чем в тканевой жидкости. В результате кислород свободно переходит из крови в тканевую жидкость и в ткани. Углекислый газ, который образуется в ходе многочисленных химических превращений, наоборот, переходит из тканей в тканевую жидкость, а из нее в кровь. Таким образом кровь насыщается углекислым газом.

Дыхательные движения. Газообмен в организме возможен только при условии постоянной смены воздуха в легких. Поэтому дыхание происходит постоянно. Вдохнув первый раз во время рождения, человек дышит всю жизнь. Дыхательный цикл складывается из вдоха и выдоха, которые ритмично следуют один за другим. В легких нет мышц, которые могли бы попеременно сжимать и расширять их. Легкие растягиваются пассивно, следуя за движениями стенок грудной полости. Дыхательные движения совершаются с помощью дыхательных мышц. В выдохе и вдохе участвуют две группы мышц. Основные дыхательные мышцы - это межреберные мышцы и диафрагма.

При сокращении наружных межреберных мышц ребра поднимаются, а диафрагма, сокращаясь, становится плоской. Поэтому обьем грудной полости увеличивается. Легкие, следуя за стенками грудной полости, расширяются, давление в них уменьшается и становится ниже атмосферного. Поэтому воздух по воздухоносным путям устремляется в легкие - происходит вдох.

При выдохе внутренние межреберные мышцы опускают ребра, диафрагма расслабляется и становится выпуклой. Ребра под действием собственного веса и сокращения внутренних межреберных мышц, а также мышц живота, которые прикрепляются к ребрам, опускаются. Грудная полость возвращается в исходное состояние, легкие уменьшаются в обьеме, давление в них увеличивается, становится чуть выше атмосферного. Поэтому избыток воздуха выходит из легких - происходит выдох.

Так осуществляются спокойный вдох и выдох. В глубоком вдохе принимают участие мышцы шеи, стенок грудной полости и живота.

Дыхательные движения совершаются с определенной частотой: у подростков - 12-18 в минуту, у взрослых - 16-20.

Жизненная емкость легких. Важным показателем развития органов дыхания является жизненная емкость легких. Это наибольший объем воздуха, который может выдохнуть человек после глубокого вдоха. Ее измеряют с помощью специального прибора - спирометра. У взрослого человека жизненная емкость в среднем составляет 3500 мл.

У спортсменов этот показатель обычно на 1000-1500 мл больше, а у пловцов может достигать 6200 мл. При большой жизненной емкости легкие лучше вентилируются, организм получает больше кислорода.

У тучных людей жизненная емкость легких на 10-11% меньше, поэтому у них обмен газов в легких понижен.

Регуляция дыхания. Деятельностью дыхательной системы управляет дыхательный центр. Он расположен в продолговатом мозге. Идущие отсюда импульсы координируют мышечные сокращения при вдохе и выдохе. От этого центра по нервным волокнам через спинной мозг поступают импульсы, которые вызывают в определенном порядке сокращение мышц, ответственных за вдох и выдох.

Возбуждение самого центра зависит от возбуждений, идущих от различных рецепторов, и от химического состава крови. Так, прыжок в холодную воду или обливание холодной водой вызывает глубокий вдох и задержку дыхания. Резко пахучие вещества также могут вызвать задержку дыхания. Это связано с тем, что запах раздражает обонятельные рецепторы в стенках носовой полости. Возбуждение передается в дыхательный центр, и его деятельность затормаживается. Все эти процессы осуществляются реф-лекторно.

Слабое раздражение слизистой оболочки полости носа вызывает чихание, а гортани, трахеи, бронхов- кашель. Это защитная реакция организма. При чихании, кашле инородные частицы, попавшие в дыхательные пути, удаляются из организма.

В дыхательном центре находятся клетки, чувствительные к малейшему изменению содержания углекислого газа в межклеточном веществе. Избыток углекислого газа возбуждает дыхательный центр, это, в свою очередь, вызывает учащение дыхания. Лишний углекислый газ быстро удаляется, и, когда его концентрация возвращается к норме, частота дыхания снижается.

Как вы видите, регуляция дыхания происходит рефлекторно, но под контролем коры полушарий большого мозга. Это легко доказать; ведь каждый из нас может по собственному желанию изменить частоту дыхательных движений.

Краткая история курения

Один из самых распространенных пороков человека - курение табака - имеет 500-летнюю историю. В Европу листья и семена табака были привезены из Америки моряками экспедиции Христофора Колумба. Сначала табак был объявлен всеисцеляющей лечебной травой. Вот как описывались его чудодейственные свойства в одной испанской книге: «Табак вызывает сон, избавляет от усталости, успокаивает боль, вылечивает головную боль...»

Поэтому нет ничего удивительного в том, что уже в XVI в. табак прочно завладел аристократическими салонами. Особенно популярным стало курение в XVII и XVIII вв. Мужчины, женщины и молодые люди начали курить, нюхать и жевать табак.

Рекомендуемый вначале как лекарственное средство, табак, однако, очень скоро приобрел плохую славу. Борьбу с табакокурением начала испанская королева Изабелла. Ее примеру последовал французский король Людовик XIV, а русский царь Михаил Федорович Романов приказал отрезать нос каждому, кто курит. Однако уже ничто не могло остановить распространение этой «дымящейся отравы». Курение табака превратилось в новую статью дохода для многих торговцев. Приблизительно в середине XVIII в. в Бразилии начали делать папиросы, а в начале XIX в. - производить сигареты.

Так за сравнительно короткое время были созданы все условия для быстрого распространения курения табака. Этот порок постепенно охватил все слои населения. В настоящее время курение - самый распространенный вид наркомании во всем мире.

Состав табачного дыма и его действие на организм

Для тканей легких очень опасно курение. Ведь смола, образующаяся при сгорании табака и бумаги, не может выводиться из легких и в течение многих лет оседает на стенках воздухоносных путей, буквально убивая клетки их слизистой оболочки. Легкие курильщика теряют свой естественный розовый цвет, становятся черными. Такие легкие чаще подвержены различным заболеваниям, в том числе и онкологическим. В настоящее время наука располагает тысячами доказательств, подтверждающих тот факт, что табак содержит губительные для организма человека вещества. Их около 400! Вредные вещества, содержащиеся в табачном дыме, могут быть объединены в четыре группы: ядовитые алкалоиды, раздражающие вещества, ядовитые газы, канцерогенные вещества.

Одним из самых известных веществ является никотин, получивший свое название по имени французского посланника в Лиссабоне Ж. Нико, который во второй половине XVI в. преподнес Марии Медичи эту «всеисцеляющую» травку для лечения мигрени. Никотин содержится в листьях различных растений: табака, индийской конопли, польского хвоща, некоторых плаунов и др. Одной капли чистого никотина (0,05 г) достаточно, чтобы умертвить человека. Никотин из крови матери легко проникает через плаценту в кровеносную систему плода.

В табачных листьях, кроме никотина, содержится еще 11 алкалоидов, важнейшие из которых: норникотин, никотирин, никотеин, никотимин. Все они сходны с никотином по строению и свойствам и поэтому имеют похожие названия.

Печальная статистика раковых заболеваний курильщиков достаточно красноречива. Канцерогенным действием обладают различные ароматические углеводороды, которые содержатся в табачном дыму (например, бензопирен), некоторые содержащиеся в дыму фенолы, а также нитрозамин, гидразин, винилхлорид и др. Из неорганических веществ - это в первую очередь соединения мышьяка и кадмия, радиоактивный полоний, олово и висмут-210.

Из табачного дыма выделен десяток веществ, оказывающих раздражающее действие на слизистую оболочку. Наиболее важным из них является ненасыщенный альдегид пропеналь. Он обладает высокой химической и биологической активностью, вызывая у курильщиков кашель.

В газовой фракции табачного дыма содержится большое число неорганических соединений, обладающих высокой химической и биологической активностью, таких как оксид углерода, сероводород, цианид водорода и др.

  • Когда больной гриппом или другим недугом чихает, микроскопические капельки слюыы и слизи, содержащие бактерии и вирусы, летят на расстояние до 10 м, причем некоторое время эти капельки способны «висеть» в воздухе, заражая окружающих.

Проверьте свои знания

  1. Расскажите, какие процессы происходят в легочных альвеолах.
  2. Каков механизм газообмена в тканях?
  3. Каким образом совершаются дыхательные движения?

Подумайте

  1. Чем отличается легочный газообмен от тканевого?
  2. Что выгоднее для ныряльщика - сделать перед погружением несколько вдохов и выдохов или набрать в легкие как можно больше воздуха?

В альвеолах легких происходит газообмен: кровь насыщается кислородом и выделяет углекислый газ. В тканях происходит обратный процесс. Вентиляция легких происходит благодаря вдоху и выдоху, которые осуществляются при сокращении и расслаблении диафрагмы и межреберных мышц. Деятельностью дыхательной системы руководит нервная система. Изменение концентрации углекислого газа в крови влияет на частоту дыхательных движений.

Газообмен в легких осуществляется в результате диффузии кисло-рода из альвеолярного воздуха в кровь (500 л в сутки) и углекислого газа из крови в альвеолярный воздух (430 л в сутки). Диффузию обес-печивает разность парциального давления этих газов в альвеолярном воздухе и их напряжения в крови.

Парциальное давление газа в газовой смеси пропорционально процентному содержанию газа в ней (табл. 3). Разность парциального давления кислорода (100 мл рт. ст.) и углекислого газа (40 мм рт. ст.) в альвеолярном воздухе является той силой, с которой молекулы этих газов проникают через альвеолярную мембрану в кровь.

В крови газ находится в растворенном свободном состоянии. Сила, с которой молекулы растворенного газа стремятся выйти в газовую среду, называется напряжением газа в жидкости. Если парциальное давление газа выше его напряжения, газ будет растворяться. Если парциальное давление газа ниже его напряжения, то газ будет выхо-дить из раствора в газовую среду.

Диффузия кислорода обеспечивается разностью парциальных давлений, составляющей 60 мм рт. ст. Кровь через капилляры малого круга протекает за 0,7 с, что достаточно для растворения кислорода в крови и перехода оксида углерода в альвеолярный воздух.

Переносчиком газов является кровь. Кислород и углекислый газ переносятся в связанном состоянии. Благодаря особому свойству ге-моглобина вступать в соединение с кислородом и углекислым газом кровь способна поглощать эти газы в значительном количестве. В нор-ме 1 л артериальной крови содержит 180-200 мл кислорода, веноз-ной - 120 мл. Часть кислорода, поглощаемая тканями из артериаль-ной крови, называется коэффициентом утилизации. Одна молекула гемоглобина способна присоединять к себе четыре молекулы кисло-рода, образуя нестойкое соединение оксигемоглобин. 1 г гемоглобина связывает 1,34 мл кислорода. В 100 мл крови содержится 15 г гемогло-бина. При поступлении в ткани оксигемоглобин отдает кислород клеткам, а образовавшийся в результате обмена веществ углекислый газ переходит в кровь и присоединяется к гемоглобину, образуя не-прочное соединение карбгемоглобин.

Обмен газов в тканях

Наименьшее напряжение кислорода наблюдается в местах его по-требления - в клетках, где кислород используется для процессов окисления. Молекулы кислорода, освобождающиеся в результате рас-щепления оксигемоглобина, движутся в направлении более низкого напряжения. В тканевой жидкости оно около 40 мм рт. ст., что значи-тельно ниже, чем в крови.

В клетках в результате обменных процессов наблюдается наиболь-шее напряжение углекислого газа (до 60 мм рт. ст.), в артериальной крови оно составляет 40 мм рт. ст. Углекислый газ движется по гради-енту напряжения в кровеносные капилляры и транспортируется кро-вью к легким.

Регуляция дыхания

Изменение режима работы дыхательной системы, направленное на точное и своевременное удовлетворение потребности организма в кислороде, называется регуляцией дыхания. Как и регуляция других вегетативных функций, она осуществляется нервным и гуморальным путем.

Нервная регуляция дыхания контролируется дыхательным центром, находящимся в продолговатом мозге, где каждые 4 с возникает возбу-ждение. Этот нервный центр был впервые подробно исследован рус-ским физиологом Н.А. Миславским(1854-1928). Дыхательный центр состоит из двух тесно взаимосвязанных отделов, ответственных за протекание вдоха (инспираторный центр) и выдоха (экспираторный центр). Возбудимость нервных клеток дыхательного центра опреде-ляется содержанием в крови углекислого газа (гуморальный фактор). При повышении в крови концентрации углекислого газа степень воз-буждения нервных клеток дыхательного центра возрастает, что при-водит к интенсификации дыхания. Важное значение в регуляции ды-хания имеют также и другие рефлекторные механизмы. Так, при вдохе происходит растяжение легких и раздражение барорецепторов, распо-ложенных в их стенках, а также в межреберных мышцах и диафрагме. Центростремительные импульсы поступают в продолговатый мозг, происходит торможение вдоха, и начинается выдох. Как только рас-тяжение легких прекращается, импульсы в нервный центр перестают поступать, возбудимость нервных клеток возрастает и опять вклю-чается механизм вдоха. Разрушение дыхательного центра приводит к немедленной остановке дыхания и гибели организма. Участие коры головного мозга в регуляции дыхания доказывается возможностью произвольной задержки дыхания или его интенсификацией. Способ-ность к произвольной регуляции дыхания зависит от тренированности

организма. Например, у спортсменов возможно произвольное усиле-ние дыхания и увеличение его максимального объема до 200 л, в то время как у людей, не занимающихся спортом, - только до 70-80 л. Примером участия коры головного мозга в регуляции дыхания явля-ется также изменение его у спортсменов на старте или у студентов, сдающих экзамены.

Гуморальная регуляция дыхания осуществляется, во-первых, за счет прямого воздействия углекислого газа крови на дыхательный центр. Во-вторых, при изменении химического состава крови возбуждаются рецепторы сосудов и импульсы от них поступают в дыхательный центр, соответственно изменяя его работу.

При повышении или понижении атмосферного давления прояв-ляются особенности дыхательной системы.

При понижении давления происходят следующие изменения. Подъем на высоту 1,5-2 км не сопровождается изменением дыхания. На высоте 2-5 км наступает увеличение вентиляции легких, повыша-ется артериальное давление и увеличивается частота сердечных со-кращений. При дальнейшем снижении атмосферного давления на высоте 4-5 км развивается горная или высотная болезнь, сопровож-дающаяся слабостью, снижением частоты сердечных сокращений и артериального давления, головными болями, уменьшением глуби-ны дыхания. Выше 7 км могут наступить потеря сознания и опасные для жизни нарушения дыхания и кровообращения. Длительное пре-бывание в горах сопровождается акклиматизацией. Это обусловлено увеличением количества эритроцитов, гемоглобина, повышением вентиляции легких, повышением устойчивости нервных клеток к ги-поксии.

Повышение давления наблюдается при погружении на глубину. В этих условиях увеличивается растворимость газов в крови, что мо-жет привести к «кислородному отравлению», сопровождающемуся судорогами. В связи с этим при погружении используются гелие-во-кислородные смеси. Преимущество гелия в том, что он практиче-ски нерастворим в воде. Особого внимания требует переход человека от высокого давления к нормальному. При высоком давлении, как мы отмечали, увеличивается растворимость газов в крови. В случае быст-рого подъема они не успевают выделиться из организма и образуют в крови пузырьки, которые разносятся кровью и закупоривают сосу-ды (газовая эмболия). При этом появляются боли в мышцах, голово-кружение, рвота, одышка, потеря сознания и параличи.

Предыдущая22232425262728293031323334353637Следующая

Газообмен в легких

Легкие – самый объемный внутренний орган нашего организма. Они чем-то очень похожи на дерево (этот отдел так и называется − бронхиальное дерево), увешанное пузырьками-плодиками (альвеолами). Известно, что легкие содержат почти 700 млн. альвеол. И это функционально оправдано – именно они выполняют главную роль в воздухообмене. Стенки альвеол настолько эластичны, что могут растягиваться в несколько раз при вдохе. Если сравнить площадь поверхности альвеол и кожи, то открывается удивительный факт: несмотря на кажущуюся компактность, альвеолы в десятки раз превышают по площади кожные покровы.

Газообмен в легких

Легкие – великие труженики нашего организма. Они находятся в постоянном движении, то сокращаясь, то растягиваясь. Это происходит днем и ночью против нашего желания. Однако, совсем автоматическим этот процесс назвать нельзя. Он скорее полуавтоматический.

Обмен газов в легких

Мы ведь можем сознательно задержать дыхание или форсировать его. Дыхание – одна из самых необходимых функций организма. Нелишне будет напомнить, что воздух − это смесь газов: кислорода (21%), азота (около 78%), углекислого газа (около 0,03%). Кроме этого, в нем присутствуют инертные газы и водяные пары.

С уроков биологии многие наверняка помнят опыт с известковой водой. Если выдохнуть через трубочку в прозрачную известковую воду − она помутнеет. Это является неопровержимым доказательством, что в воздухе после выдоха углекислого газа содержится гораздо больше: около 4%. Количество кислорода при этом, наоборот, уменьшается и составляет 14%.

Что управляет легкими или механизм дыхания

Механизм газообмена в легких − весьма интересный процесс. Сами по себе легкие не растянутся и не сожмутся без работы мышц. В легочном дыхании участвуют межреберные мышцы и диафрагма (специальная плоская мышца на границе грудной и брюшной полостей). Когда сокращается диафрагма, в легких понижается давление, и воздух, естественно, устремляется в орган. Выдох происходит пассивно: эластичные легкие сами выталкивают воздух наружу. Хотя иногда мышцы могут сокращаться и при выдохе. Так происходит при активном дыхании.

Весь процесс находится под контролем головного мозга. В продолговатом мозге есть специальный центр регуляции дыхания. Реагирует он на наличие углекислого газа в крови. Как только его становится меньше, центр по нервным путям посылает сигнал диафрагме. Происходит процесс ее сокращения, и наступает вдох. При повреждении дыхательного центра больному вентилируют легкие искусственным путем.

Как в легких происходит обмен газов?

Главная задача легких не просто перегонять воздух, а осуществлять процесс газообмена. В легких меняется состав вдыхаемого воздуха. И здесь основная роль принадлежит кровеносной системе. Что же представляет собой кровеносная система нашего организма? Ее можно представить большой рекой с притоками из маленьких речушек, в которые впадают ручейки. Вот такими ручейками-капиллярами пронизаны все альвеолы.

Кислород, поступивший в альвеолы, проникает в стенки капилляров. Это происходит потому, что в крови и воздухе, содержащимся в альвеолах, давление разное. Венозная кровь имеет меньшее давление, чем воздух альвеол. Поэтому кислород из альвеол устремляется в капилляры. Давление же углекислого газа меньше в альвеолах, чем в крови. По этой причине из венозной крови углекислый газ направляется в просвет альвеол.

В крови имеются специальные клетки – эритроциты, содержащие белок гемоглобин. Кислород присоединяется к гемоглобину и путешествует в таком виде по организму. Кровь, обогащенная кислородом, называется артериальной.

Дальше кровь переносится к сердцу. Сердце − еще один наш неутомимый труженик − перегоняет кровь, обогащенную кислородом, к клеткам тканей. И далее по «реченькам-ручейкам» кровь вместе с кислородом доставляется ко всем клеткам организма. В клетках она отдает кислород, забирает углекислый газ – продукт жизнедеятельности. И начинается обратный процесс: тканевые капилляры – вены – сердце – легкие. В легких обогащенная углекислым газом кровь (венозная) поступает опять в альвеолы и вместе с остатками воздуха выталкивается наружу. Углекислый газ, также как и кислород, переносится с помощью гемоглобина.

Итак, в альвеолах происходит двойной газообмен. Весь этот процесс осуществляется молниеносно, благодаря большой площади поверхности альвеол.

Недыхательные функции легких

Значение легких определяется не только дыханием. К дополнительным функциям этого органа можно отнести:

  • защита механическая: в альвеолы поступает стерильный воздух;
  • защита иммунная: в крови содержатся антитела к различным патогенным факторам;
  • очистительная: кровь выводит газообразные токсические вещества из организма;
  • поддержка кислотно-щелочного равновесия крови;
  • очищение крови от мелких тромбов.

Но какими бы ни казались они важными, все-таки основная работа легких – дыхание.

Дыхание — обмен газов между клетками и окружающей средой. Этапы газообмена в человеческом организме. Органы дыхания, строение легких. Характеристика, возбудители и основные симптомы заболеваний дыхательной системы, способы профилактики данных болезней.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Возрастные особенности органов дыхания. Нарушения и профилактика

Значение дыхания для жизнедеятельности организма. Механизм дыхания. Обмен газов в легких и тканях. Регуляция дыхания в организме человека. Возрастные особенности и нарушения деятельности органов дыхания. Дефекты органов речи. Профилактика заболеваний.

курсовая работа , добавлен 26.06.2012

Наблюдение и уход за больными с заболеваниями органов дыхания

Дыхание как физиологический процесс газообмена для поддержания метаболизма и гомеостаза. Симптомы патологий дыхательной системы: одышка, удушье, кашель, мокрота, легочное кровотечение, боли в грудной клетке. Профилактика заболеваний органов дыхания.

реферат , добавлен 24.12.2017

Строение и функции носовой полости. Внутреннее строение легкого. Система органов дыхания. Обмен газов между воздушной средой и легкими. Транспортировка газов кровью. Обмен газов между легкими и кровью. Органы дыхательных путей. Бронхиолы и альвеолы.

презентация , добавлен 30.03.2013

Особенности строения органов дыхания и процесс дыхания у человека

Понятие процесса дыхания в медицине. Описание особенностей органов дыхания, краткая характеристика каждого из них, строение и функции. Газообмен в легких, профилактика заболеваний органов дыхания.

Обмен газов в легких. Перенос газов кровью. Обмен газов в тканях

Особенности строения органов дыхания у детей, роль ЛФК.

статья , добавлен 05.06.2010

Методы и меры профилактики болезней органов дыхания и бронхиальной астмы

Профилактика заболеваний органов дыхания и бронхиальной астмы. Характерные симптомы и особенности протекания бронхиальной астмы как болезни органов дыхания. Основные этапы проведения профилактических мер по предупреждению возникновения бронхиальной астмы.

реферат , добавлен 21.05.2015

Физиотерапевтическое лечение при заболеваниях органов дыхания

Заболевания органов дыхания: аспергиллез, бронхиальная астма, острый бронхит, пневмония. Этиология, патогенез, симптомы, течение и лечение данных заболеваний. Методы физиотерапии при лечении заболеваний органов дыхания и характеристика их эффективности.

реферат , добавлен 18.09.2010

Заболевания сердечно-сосудистой системы и органов дыхания

Характеристика заболеваний сердечно–сосудистой системы, специфика и методика использования способов физической реабилитации. Объективные симптомы при заболеваниях дыхательной системы. Методы диагностики функционального состояния органов дыхания.

реферат , добавлен 20.08.2010

Заболевания дыхательной системы и их предупреждение

Строение дыхательной системы человека. Воспалительные заболевания дыхательной системы, их лечение. Профессиональные заболевания органов дыхания, особенности их профилактики. Предупреждение заболеваний дыхательной системы: упражнения, массаж, закаливание.

реферат , добавлен 21.01.2011

Органы дыхания

Процесс поглощения из воздуха кислорода и выделения углекислого газа. Смена воздуха в легких, чередование вдоха и выдоха. Процесс дыхания через нос. Что опасно для органов дыхания. Развитие смертельных заболеваний легких и сердца у курильщиков.

презентация , добавлен 15.11.2012

Газообмен в легких. Диффузия. Парциальное давление газов

Анатомо-физиологические особенности органов дыхания. Соотношение вентиляции и перфузии кровью легких, процесс диффузии газов. Процессы нарушения газообмена в легких при измененном давлении воздуха. Функциональные и специальные методы исследования легких.

курсовая работа , добавлен 26.01.2012

Дыхание у человека и высших животных осуществляется практически полностью через легкие. Через кожу и пищеварительный тракт поглощается не более 1 - 1,5% получаемого организмом кислорода. Обновление воздуха в органах дыхания происходит в результате ритмической смены вдоха и выдоха. Часть поступающего в дыхательные пути воздуха не участвует в обмене. Это воздух «вредного пространства» - носоглотки, трахеи, бронхов и бронхиол, где не происходит обмен газами вдыхаемого воздуха и крови. Объем его составляет 140-150 см3.

Поступление воздуха в легкие (вдох) является результатом сокращения дыхательных мышц и увеличения объема легких. Выдох происходит вследствие расслабления дыхательных мышц.

При этом ребра и грудина опускаются книзу, а более высокое, чем в грудной полости внутрибрюшное давление смещает купол диафрагмы в сторону легких. При форсированном вдохе в работу вовлекаются мышцы верхней части туловища. Форсированному выдоху способствует сокращение мышц живота.

Как при вдохе, так и при выдохе сохраняется отрицательное давление в межплевральной полости, находящейся между париетальным (пристеночным) и висцеральным (легочным) листками плевры. Это обусловлено эластическим сопротивлением легочной ткани, препятствующей передаче атмосферного давления на пристеночный листок плевры. Величина отрицатель-го давления на вдохе составляет около 0,9 кПа, на выдохе около 0,3 кПа (1 кПа = 7,5 мм рт.ст.). Эластическое сопротивление легочной ткани растягиванию вдыхаемым воздухом зависит не только от эластических структур легкого. Оно обусловлено также поверхностным натяжением альвеол и наличием сурфактанта - фактора, понижающего поверхностное натяжение. Это вещество, богатое сфолипидами и липопротеидами, образуется в клетках альвеоярного эпителия. Сурфактант препятствует спадению легких при выдохе, а поверхностное натяжение альвеолярных стенок предупреждает чрезмерное растягивание легких на вдохе, и форсированном вдохе перерастяжению легочных альвеол мешают также эластические силы самих легочных структур. Эффективность внешнего дыхания может быть оценена по величине легочной вентиляции, т.е. по объему воздуха, проходящего через дыхательные пути. Она зависит от частоты и глубины дыхания. Величина легочной вентиляции косвенно связана с жизненной емкостью легких (ЖЕЛ). Взрослый человек за один дыхательный цикл вдыхает и выдыхает в среднем мо 500 см3 воздуха. Этот объем называется дыхательным. и дополнительном (после нормального вдоха) максимальном вдохе можно вдохнуть еще 1500 - 2000 см3 воздуха. Это дополнительный объем воздуха. После спокойного выдоха ясно дополнительно выдохнуть еще около 1500 см3 воздуха, э дополнительный объем выдоха. Жизненная емкость легких равна суммарной величине дыхательного и дополнительного объемов вдоха и выдоха.

Легочная вентиляция в покое составляет 5 - 6 дм3. При мышечной работе она возрастает до 100 дм3 и более в 1 мин. Наибольшие величины легочной вентиляции (до 150 дм3/мин) могут быть получены при произвольном глубоком и частом дыхании (максимальная легочная вентиляция). Обмен газов в легких происходит диффузионным путем вследствие разницы в парциальном давлении газов в легких и крови.

Диффузионная способность легких тем выше, чем больше площадь газообмена, выше коэффициент диффузии и больше растворимость газов в жидкости альвеолярных мембран. С увеличением толщины мембраны диффузионная способность ухудшается. Количество газа, переходящего через стенки легочных альвеол в единицу времени, характеризует скорость диффузии.

Обмен газов в легких. Транспорт газов кровью. Обмен дыхательных газов в тканях

Она хорошо коррелирует с мощностью работы и количеством гемоглобина в крови.

При увеличении объема крови и скорости кровотока в легких сокращается время контакта воздуха и крови. При этом происходит резкое увеличение поступления кислорода в кровь, хотя диффузионная способность легких не изменяется. Это результат увеличения альвеолярно-капиллярного градиента по кислороду. Кратковременность контакта воздуха и крови компенсируется увеличением скорости перехода кислорода в кровь. В состав альвеолярного воздуха входят: 13,5 - 15% кислорода, 5 - 6% углекислого газа и около 80% азота. Парциальное давление кислорода (р02) альвеолярного воздуха составляет 13 - 15 кПа (97,5 - 112,4 мм рт.ст.), а в венозной крови, притекающей к легким, - 8 - 10 кПа (60 - 75 мм рт.ст.). Эта разница в р02 и обусловливает диффузию 5 - 6 дм3 кислорода в минуту. Парциальное давление С02 в венозной крови легочных капилляров составляет около 6,0 кПа (45 мм рт.ст.), а парциальное давление в альвеолярном воздухе не более 5,3 кПа (40 мм рт.ст.). Перепад в давлении, равный 0,6 - 0,7 кПа, обусловливает быстрый переход из венозной крови в полость альвеол. Этот процесс ускоряется также тем, что проницаемость легочных мембран для С02 в 25 - 30 раз выше, чем для 02. В состав выдыхаемого воздуха входят 15 - 18% кислорода, 3,5 - 5,0% углекислого газа. Количество азота остается Практически неизменным и составляет около 80%.

Фомин А. Ф. Физиология человека, 1995 г.

Процесс дыхания. Определение. Этапы. Внешнее дыхание. Транспорт газов кровью. Тканевое дыхание. Газообмен

Дыханием называют обмен газов между организмом и окружающей средой (поступлением кислорода и выделением углекислого газа).

Кислород необходим для окислительных реакций в результате которых выделяется энергия необходимая для жизнедеятельности (окисление питательных веществ- поглощение кислорода и выделение углекислого газа) .

Акт дыхания состоит из трех процессов:

внешнее, или легочное, дыхание — обмен газов между организмом и окружающей средой;

внутреннее, или тканевое, дыхание, протекающее в клетках;

транспорт газов кровью, т.е. перенос кислорода кровью от легких к тканям и углекислого газа от тканей к легким.

Значение дыхания:

обеспечение организма О 2

образование и удаление из организма СО 2

окисление органических соединений с высвобождением Е

удаление некоторых конечных продуктов обмена веществ: Н 2 О, NH 3 , H 2 S и др.

Внешнее дыхание - это газообмен между организмом и окружающим его атмосферным воздухом.

Осуществляется в два этапа - обмен газов между атмосферным и альвеолярным воздухом и газообмен между кровью легочных капилляров и альвеолярным воздухом.

Аппарат внешнего дыхания включает в себя дыхательные пути, легкие, плевру, скелет грудной клетки и ее мышцы, а также диафрагму. Основной функцией аппарата внешнего дыхания является обеспечение организма кислородом и освобождение его от избытка углекислого газа. О функциональном состоянии аппарата внешнего дыхания можно судить по ритму, глубине, частоте дыхания, по величине легочных объемов, по показателям поглощения кислорода и выделения углекислого газа и т.

Транспорт газов осуществляется кровью. Онобеспечивается разностью парциального давления (напряжения) газов по пути их следования: кислорода от легких к тканям, углекислого газа от клеток к легким.

Внутреннее или тканевое дыхание также может быть разделено на два этапа .

Первый этап — обмен газов между кровью и тканями. Второй - потребление кислорода клетками и выделение ими углекислого газа (клеточное дыхание).

СОСТАВ ВДЫХАЕМОГО, ВЫДЫХАЕМОГО И АЛЬВЕОЛЯРНОГО ВОЗДУХА

Человек дышит атмосферным воздухом , который имеет следующий состав: 20,94% кислорода, 0,03% углекислого газа, 79,03% азота. В выдыхаемом воздухе обнаруживается 16,3% кислорода, 4% углекислого газа, 79,7% азота.

Альвеолярный воздух по составу отличается от атмосферного. В альвеолярном воздухе резко уменьшается содержание кислорода и возрастает количество углекислого газа.

Процентное содержание отдельных газов в альвеолярном воздухе: 14,2-14,6% кислорода, 5,2-5,7% углекислого газа , 79,7-80% азота.

Дыхательный цикл состоит из вдоха, выдоха и дыхательной паузы. Длительность вдоха у взрослого человека от 0,9 до 4,7 с , длительность выдоха - 1,2-6 с . Дыхательная пауза различна по величине и даже может отсутствовать.

Дыхательные движения совершаются с определенным ритмом и частотой , которые определяют по числу экскурсий грудной клетки в 1 мин. У взрослого человека частота дыхательных движений составляет 12-18 в 1 мин.

Глубину дыхательных движений определяют по амплитуде экскурсий грудной клетки и с помощью специальных методов, позволяющих исследовать легочные объемы.

Механизм вдоха. Вдох обеспечивается расширением грудной клетки вследствие сокращения дыхательных мышц – наружных межреберных и диафрагмы. Поступление воздуха в легкие в значительной степени зависит от отрицательного давления в плевральной полости.

Механизм выдоха. Выдох (экспирация) осуществляется в результате расслабления дыхательной мускулатуры, а также вследствие эластической тяги легких, стремящихся занять исходное положение. Эластические силы легких представлены тканевым компонентом и силами поверхностного натяжения, которые стремятся сократить альвеолярную сферическую поверхность до минимума. Однако альвеолы в норме никогда не спадаются. Причина этого – наличие в стенках альвеол поверхностно-активного стабилизирующего вещества – сурфактанта , вырабатываемого альвеолоцитами.

Газообмен в лёгких человека

Дыхательные объемы

При спокойном дыхании человек вдыхает и выдыхает около 500 мл (от 300 до 800 мл) воздуха; этот объем называется дыхательным объемом (ДО). Сверх него при глубоком вдохе человек может вдохнуть еще приблизительно 1700 (от 1500 до 2000) мл воздуха – это резервный объем вдоха (РО вд.). После спокойного выдоха человек способен выдохнуть около 1300 (от 1200 до 1500 мл) – это резервный объем выдоха (РО выд.).

Сумма указанных объемов составляет жизненную емкость легких (ЖЕЛ): 500 + 1700 + 1300 = 3500 мл. ДО – количественное выражение глубины дыхания. ЖЕЛ определяет максимальный объем воздуха, который может быть введен или выведен из легких в течение одного вдоха или выдоха. ЖЕЛ взрослого человека в среднем равна 3500 – 4000 мл, у мужчин она несколько больше, чем у женщин.

ЖЕЛ не характеризует всего объема воздуха, находящегося в легких. После того как человек максимально выдыхает, в его легких остается большое количество воздуха. Оно составляет около 1200 мл, и называют его остаточным объемом (ОО).

Максимальное количество воздуха, которое может находиться в легких, называется общей емкостью легких (ОЕЛ), она равна сумме ЖЕЛ и ОО.

Объем воздуха, находящийся в легких в конце спокойного выдоха (при расслабленной дыхательной мускулатуре), называется функциональной остаточной емкостью (ФОЕ). Она равна сумме ОО и РО выд. (1200 + 1300 = 2500 мл). ФОЕ близка к объему альвеолярного воздуха перед началом вдоха.

С каждым актом дыхания не весь дыхательный объем воздуха попадает в легкие. Значительная часть его 160 (от 150 до 180 мл) остается в воздухоносных путях (в носоглотке, трахее, бронхах). Объем воздуха, заполняющий крупные воздухоносные пути, называют воздухом «вредного» или «мертвого» пространства. В нем не происходит обмен газов. Таким образом, в легкие с каждым вдохом попадает 500 – 160 = 340 мл воздуха. В альвеолах к концу спокойного выдоха находится около 2500 мл воздуха (ФОЕ), поэтому при каждом спокойном вдохе обновляется 340/2500 = 1/7 часть воздуха.

Атмосферный воздух, прежде чем попасть в легкие, смешивается с воздухом вредного пространства, вследствие чего содержание газов в нем изменяется. По этой же причине неодинаково содержание газов в выдыхаемом и альвеолярном воздухе.

Непрерывную смену воздуха, происходящую в легких, называют легочной вентиляцией . Ее показателем является минутный объем дыхания (МОД), т. е. количество воздуха, выдыхаемое за минуту. Величина МОД определяется произведением числа дыхательных движений в минуту на ДО. У женщин величина МОД может быть равна 3 – 5 л, а у мужчин – 6 – 8 л. Минутный объем значительно увеличивается при физической работе и может достигать 140 – 180 л/мин.

Транспорт газов кровью

Важным фактором переноса газов кровью является образование химических соединений с веществами плазмы крови и эритроцитов. Для установления химических связей и физического растворения газов важна величина давления газа над жидкостью. Если над жидкостью находится смесь газов, то движение и растворение каждого из них зависят от его парциального давления. Парциальное давление О 2 , содержащегося в альвеолярном воздухе равно 105 мм рт. ст., СО 2 – 35 мм рт. ст.

Альвеолярный воздух контактирует с тонкими стенками легочных капилляров, по которым приходит к легким венозная кровь. Интенсивность обмена газов и направление их движения (из легких в кровь или из крови в легкие) зависят от парциального давления кислорода и углекислоты в газовой смеси в легких и в крови. Движение газов осуществляется от большего давления к меньшему. Следовательно, кислород будет поступать из легких (его парциальное давление в них равно 105 мм рт. ст.) в кровь (его напряжение в крови 40 мм рт. ст.), а углекислый газ из крови (напряжение 47 мм рт. ст.) в альвеолярный воздух (давление 35 мм рт. ст.).

В эритроцитах крови кислород соединяется с гемоглобином (Hb) и образует непрочное соединение – оксигемоглобин (HbO 2). Насыщение крови кислородом зависит от количества гемоглобина в крови. Максимальное количество кислорода, которое может поглотить 100 мл крови, называют кислородной емкостью крови. Известно, что в 100 г крови человека содержится приблизительно 14 % гемоглобина. Каждый грамм гемоглобина может связать 1,34 мл О 2 . Значит, 100 мл крови могут перенести 1,34 11 14% = 19 мл (или 19 объемных процентов). Это и есть кислородная емкость крови.

Связывание кислорода кровью. В артериальной крови 0,25 об.% О 2 находится в состоянии физического растворения в плазме, а остальные 18,75 об.% – в эритроцитах в виде оксигемоглобина. Связь гемоглобина с кислородом зависит от величины напряжения кислорода: если оно увеличивается, гемоглобин присоединяет кислород и образуется оксигемоглобин (НbО 2). При уменьшении напряжения кислорода оксигемоглобин распадается и отдает кислород. Кривую, отражающую зависимость насыщения гемоглобина кислородом от напряжения последнего, называют кривой диссоциации оксигемоглобина (рис. 19).

Рис. 19. Зависимость насыщения крови человека кислородом от его парциального давления (кривая диссоциации оксигемоглобина)

На рисунке видно, что даже при небольшом парциальном давлении кислорода (40 мм рт. ст.) с ним связываются 75 – 80% гемоглобина. При давлении 80 – 90 мм рт. ст. гемоглобин почти полностью насыщается кислородом. В альвеолярном воздухе парциальное давление кислорода достигает 105 мм рт. ст., поэтому кровь в легких будет полностью насыщена кислородом.

При рассмотрении кривой диссоциации оксигемоглобина можно заметить, что при уменьшении парциального давления кислорода оксигемоглобин подвергается диссоциации и отдает кислород. При нулевом давлении кислорода оксигемоглобин может отдать весь соединенный с ним кислород. Благодаря легкой отдаче гемоглобином кислорода при снижении парциального давления обеспечивается бесперебойное снабжение им тканей, в которых из-за постоянного потребления кислорода его парциальное давление стремится к нулю.

Особое значение в связывании гемоглобина с кислородом имеет содержание CO 2 в крови. Чем больше содержится углекислоты в крови, тем меньше связывается гемоглобин с кислородом и тем быстрее происходит диссоциация оксигемоглобина. Особенно резко понижается способность гемоглобина соединяться с кислородом при давлении CO 2 , равном 47 мм рт. ст., т. е. при величине, соответствующей напряжению СО 2 в венозной крови. Влияние СО 2 на диссоциацию оксигемоглобина очень важно для переноса газов в легких и тканях.

В тканях содержится большое количество СО 2 и других кислых продуктов распада, образующихся в результате обмена веществ. Переходя в артериальную кровь тканевых капилляров, они способствуют более быстрому распаду оксигемоглобина и отдаче кислорода тканям.

В легких же, по мере выделения СО 2 из венозной крови в альвеолярный воздух, с уменьшением содержания СО 2 в крови увеличивается способность гемоглобина соединяться с кислородом. Тем самым обеспечивается превращение венозной крови в артериальную.

Связывание углекислого газа кровью. В артериальной крови содержится 50 – 52 об% СО 2 , а в венозной на 5 – 6 об% больше – 55 – 58%. Из них 2,5 – 2,7 об% в состоянии физического растворения, а остальная часть – в виде солей угольной кислоты: бикарбоната натрия (NaHCO 3) в плазме и бикарбоната калия (КНСО 3) – в эритроцитах.

Часть углекислого газа (от 10 до 20 об%) может транспортироваться в виде соединений с аминогруппой гемоглобина – карбгемоглобина.

Из всего количества СО 2 большая его часть переносится плазмой крови.

Одной из важнейших реакций, обеспечивающих транспорт CO 2 , является образование угольной кислоты из СО 2 и H 2 O в эритроцитах:

H 2 O + CO 2 H 2 CO 3

Эта реакция в крови ускоряется приблизительно в 20 000 раз ферментом карбоангидразой. При увеличении содержания СО 2 в крови (что бывает в тканях) фермент способствует гидратации СО 2 и реакция идет в сторону образования Н 2 СО 3 . При уменьшении парциального напряжения СО 2 в крови (что имеет место в легких) фермент карбоангидраза способствует дегидратации H 2 CO 3 и реакция идет в сторону образования CO 2 и Н 2 О. Это обеспечивает наиболее быструю отдачу СО 2 в альвеолярный воздух.

Связывание СО 2 кровью, так же как и кислорода, зависит от парциального давления: увеличивается по мере его возрастания. При парциальном напряжении СО 2 , равном 41 мм рт. ст. (что соответствует его напряжению в артериальной крови), в крови содержится 52% углекислоты. При напряжении CO 2 , равном 47 мм рт. ст. (что соответствует напряжению в венозной крови), содержание СО 2 возрастает до 58%.

На связывание СО 2 кровью влияет присутствие оксигемоглобина в крови. При превращении артериальной крови в венозную солями гемоглобина отдается кислород и тем самым облегчается ее насыщение углекислым газом. При этом содержание СО 2 в ней увеличивается на 6%: с 52% до 58%.

В сосудах легких образование оксигемоглобина способствует отдаче СО 2 , содержание которого при превращении венозной крови в артериальную уменьшается с 58 до 52 объемных процентов.

Обмен газов в легких и тканях

В легких происходит обмен газов между альвеолярным воздухом и кровью через стенки плоского эпителия альвеол и кровеносных сосудов. Этот процесс зависит от парциального давления газов в альвеолярном воздухе и их напряжения в крови (рис. 20).

Рис. 20.Схема газообмена в легких и тканях

Поскольку парциальное давление О 2 в альвеолярном воздухе велико, а в венозной крови его напряжение значительно меньше, то О 2 диффундирует из альвеолярного воздуха в кровь, а углекислый газ, вследствие его большего напряжения в венозной крови, переходит из нее в альвеолярный воздух. Диффузия газов осуществляется до наступления равенства парциальных давлений. При этом венозная кровь превращается в артериальную – она получает 7 объемных процентов кислорода и отдает 6 объемных процентов углекислого газа.

Каждый газ, прежде чем перейти в связанное состояние, находится в состоянии физического растворения. Кислород, пройдя эту фазу, поступает в эритроцит, где соединяется с гемоглобином и превращается в оксигемоглобин:

HHb + O 2 HHbO 2

Поскольку оксигемоглобин является более сильной кислотой, чем угольная, то он в эритроцитах реагирует с бикарбонатом калия, вследствие чего образуется калийная соль оксигемоглобина – (КНbО 2) и угольная кислота:

КНСО 3 + ННbО 2 КНbО 2 + Н 2 СО 3

Образованная угольная кислота под влиянием карбоангидразы подвергается дегидратации: H 2 CO 3 H 2 O + CO 2 и образующийся углекислый газ выделяется в альвеолярный воздух.

По мере уменьшения углекислоты в эритроците на смену ей из плазмы крови поступают ионы HCO , образующиеся вследствие диссоциации бикарбоната натрия: NaНСО 3 Na + + НСО .

Взамен ионов НСО из эритроцитов в плазму поступают ионы С1 – .

Обмен газов в тканях. Артериальная кровь, приходящая к тканям, содержит 19 объемных процентов кислорода, парциальное напряжение которого равно 100 мм рт. ст., и 52 объемных процента СО 2 с напряжением 41 мм рт. ст.

Поскольку в тканях в процессе обмена веществ кислород непрерывно используется, то его напряжение в тканевой жидкости удерживается около нуля. Поэтому O 2 в силу разности напряжений диффундирует из артериальной крови в ткани.

В результате обменных процессов, происходящих в тканях, образуется СО 2 и его напряжение в тканевой жидкости равно 60 мм рт. ст., а в артериальной крови значительно меньше. Поэтому СО 2 диффундирует из тканей в кровь в сторону меньшего напряжения. Углекислый газ, поступая из тканевой жидкости в плазму крови, присоединяет воду и превращается в слабую, легко диссоциирующую угольную кислоту: Н 2 О + СО 2 Н 2 СО 3 . Н 2 СО 3 диссоциирует на ионы Н + и НСО : H 2 CO 3 H + + HCO , и ее количество уменьшается, вследствие чего усиливается образование H 2 CO 3 из СО 2 и H 2 O, что улучшает связывание углекислого газа. В общей сложности при этом связывается небольшое количество СО 2 , так как константа диссоциации Н 2 СО 3 невелика. Связывание СО 2 главным образом обеспечивают белки плазмы крови.

Ведущую роль в переносе углекислого газа играет белок гемоглобин. Оболочка эритроцита проницаема для углекислого газа, который, попадая в эритроцит, под влиянием карбоангидразы подвергается гидратации и превращается в H 2 CO 3 . В капиллярах тканей калиевая соль оксигемоглобина (KHbO 2), взаимодействуя с угольной кислотой, образует бикарбонат калия (КНСО 3), восстановленный гемоглобин (ННb) и кислород, который отдается тканям. Одновременно угольная кислота диссоциирует: H 2 CO 3 H + + НСО . Концентрация ионов НСО в эритроцитах становится больше, чем в плазме, и они из эритроцита переходят в плазму. В плазме анион НСО связывается с катионом натрия Na + и образуется бикарбонат натрия (NaНСОз). Из плазмы крови взамен анионов НСО в эритроциты переходят анионы С1 – . Так происходит связывание СО 2 , поступающего в кровь из тканей и перенос его к легким. СО 2 переносится в основном в виде бикарбоната натрия в плазме и частично в виде бикарбоната калия в эритроцитах.

Газообмен в легких происходит путем диффузии. Кислород через тонкие стенки альвеол и капилляров поступает из воздуха в кровь, а углекислый газ из крови в воздух. Диффузия газов происходит в результате разности их концентраций в крови и в воздухе. Кислород проникает в эритроциты и соединяется с гемоглобином, кровь становится артериальной и направляется в ткани. В тканях происходит обратный процесс: кислород за счет диффузии переходит из крови в ткани, а углекислый газ, наоборот, переходит из тканей в кровь. Это происходит до тех пор, пока. ихЖизненная емкость легких (ЖЕЛ) включает дыхательный объем, резервный объем вдоха и резервный объем выдоха. Дыхательным объемом называют количество воздуха, поступающего в легкие при одном вдохе. В покое он равен примерно 500 см 3 и соответствует объему выдыхаемого воздуха при выдохе. Если после спокойного вдоха сделать усиленный дополнительный вдох, то в легкие может поступить дополнительно 1500 см 3 воздуха - это резерв объема вдоха. После спокойного выдоха можно при максимальном напряжении выдохнуть еще 1500 см 3 воздуха - это резервный объем. Таким образом, жизненная емкость легких - это наибольшее количество воздуха, которое человек может выдохнуть после самого глубокого вдоха. Она примерно равна 3500 см 3 . ЖЕЛ больше у спортсменов, чем у нетренированных людей, и зависит от степени развития грудной клетки, от пола и возраста. Под влиянием курения ЖЕЛ снижается. Даже после самого максимального выдоха в легких всегда остается немного воздуха, который называется остаточным объемом (ок. 1000см 3).

Дыхательные движения. Попеременное увеличение и уменьшение объема грудной клетки обусловлено ритмическими сокращениями дыхательных мышц. При этом происходит вентиляция легких. Необходимым условием осуществления дыхательных движений является герметичность плевральной полости (плевральной щели), которая находится между легочной плеврой и пристеночной плеврой и заполнена жидкостью. Регуляция дыхания. Дыхательный центр находится в продолговатом мозге. Через каждые 4 сек в дыхательном центре автоматически возникают возбуждения, обеспечивающие чередование вдоха и выдоха. Дыхательный центр автоматически регулирует также частоту и глубину дыхательных движений.

Легкие человека (лат. ед. ч. pulmo), важнейшие органы дыхательной системы у человека, наземных животных и некоторых рыб. У млекопитающих расположены в грудной клетке. Правое и левое легкое у человека занимают 4/5 грудной клетки, плотно прилегая к ее стенкам, оставляя место только для сердца, крупных кровеносных сосудов, пищевода и трахеи. Легкие не одинаковы: правое легкое больше и состоит из 3 долей, меньшее левое легкое состоит из 2 долей. Масса каждого легкого колеблется в пределах 0,5-0,6 кг.

Каждое легкое, правое и левое, по форме напоминает конус с уплощенной одной стороной и закругленной верхушкой, выступающей над I ребром. Прилегающая к диафрагме нижняя (диафрагмальная) поверхность легких вогнутая. Боковая поверхность легких (реберная) прилежит к ребрам, медиальная (средостенная) поверхность каждого легкого имеет вдавление, соответствующее сердцу и крупным сосудам. На средостенной поверхности каждого легкого расположены ворота легкого, через которые проходят образующие корень легкого главный бронх, артерии и нервы, окруженные соединительной тканью, выходят вены и лимфатические сосуды.

Каждое легкое имеет три края: передний, нижний и задний. Передний, острый край легкого разделяет реберную и медиальную поверхности. На правом легком этот край на всем протяжении направлен почти вертикально. В нижней передней части левого легкого имеется сердечная вырезка, где находится сердце. Ниже вырезки расположен так называемый язычок. Острый нижний край отделяет нижнюю поверхность от реберной, задний край закруглен. Каждое легкое разделяется глубокими щелями на доли: правое - на три, левое - на две. Косая щель идет почти одинаково на обоих легких, она начинается сзади на уровне III грудного позвонка и проникает глубоко в ткань легкого, разделяя его на 2 доли, связанные между собой только вблизи корня. На правом легком имеется еще горизонтальная щель. Она менее глубокая и более короткая, отходит от косой на реберной поверхности, идет вперед почти горизонтально на уровне IV ребра до переднего края легкого. Затем она переходит на его медиальную поверхность. Оканчивается кпереди от корня. Эта щель у правого легкого отделяет среднюю долю от верхней.

Каждое легкое покрыто серозной оболочкой - плеврой. У плевры два листка. Один плотно сращен с легким - висцеральная плевра; другой приращен к грудной клетке - париетальная, или пристеночная, плевра. Между обоими листками имеется небольшая плевральная полость, заполненная плевральной жидкостью (около 1-2 мл), которая облегчает скольжение листков плевры при дыхательных движениях. Охватывая легкое со всех сторон, висцеральная плевра на корне легкого непосредственно продолжается в париетальную плевру.

Плевра представляет собой два симметричных серозных мешка, расположенных в обеих половинах грудной клетки; между ними остается свободное пространство - средостение. Здесь помещаются сердце, трахея, пищевод, кровеносные сосуды и нервы.

Доли легких - это отдельные, анатомически обособленные участки легкого с вентилирующим их долевым бронхом. Консистенция легкого мягкая, упругая. Цвет легких у детей бледно-розовый. У взрослых ткань легкого постепенно темнеет, ближе к поверхности появляются темные пятна за счет частиц угля и пыли, которые откладываются в соединительнотканной основе легкого.

Каждому сегментарному бронху легкого соответствует бронхо-легочный сосудисто-нервный комплекс. Сегмент - участок легочной ткани, имеющий свои сосуды и нервные волокна, он вентилируется отдельным бронхом. Каждый сегмент напоминает усеченный конус, вершина которого направлена к корню легкого. А широкое основание покрыто висцеральной плеврой. Легочные сегменты отделяются друг от друга межсегментарными перегородками, состоящими из рыхлой соединительной ткани, в которой проходят межсегментарные вены. В норме сегменты не имеют четко выраженных видимых границ.

Сегменты образованы легочными дольками, разделенными междольковыми соединительнотканными перегородками. Число долек в одном сегменте около 80. Форма дольки напоминает неправильную пирамиду с диаметром основания 0,5-2 см. В верхушку дольки входит дольковый бронх, который разветвляется на 3-7 концевых (терминальных) бронхиол диаметром 0,5 мм. Их слизистая оболочка выстлана однослойным реснитчатым эпителием, между клетками которого располагаются отдельные секреторные клетки (Клара), которые являются источником восстановления эпителия концевых бронхиол. Собственная пластинка слизистой оболочки богата эластическими волокнами, которые переходят в эластические волокна респираторного отдела, благодаря чему бронхиолы не спадаются.

Функциональной единицей легкого является ацинус. Это система разветвлений одной концевой бронхиолы, которая делится на 14-16 дыхательных (респираторных) бронхиол, образующих до 1500 альвеолярных ходов, несущих до 20 тысячальвеолярных мешочков и альвеол. В одной легочной дольке имеется 16-18 ацинусов. У человека на один альвеолярный ход приходится в среднем 21 альвеола. Внешне альвеолы похожи на пузырьки неправильной формы, они разделяются межальвеолярными перегородками толщиной 208 мкм. Каждая перегородка - это стенка двух альвеол, между которыми в перегородке расположена густая сеть кровеносных капилляров, эластических, ретикулярных и коллагеновых волокон и клеток соединительной ткани.

Количество альвеол в обоих легких человека 600-700 млн., общая их поверхность составляет 40-120 м2. Большая поверхность альвеол способствует лучшему газообмену. По одну сторону этой поверхности находится альвеолярный воздух, постоянно обновляющийся в своем составе, по другую - непрерывно текущая по сосудам кровь. Через обширную поверхность альвеолярной мембраны происходит диффузия кислорода и углекислого газа. Во время физической работы, когда при глубоких вдохах альвеолы значительно растягиваются, размеры дыхательной поверхности увеличиваются. Чем больше общая поверхность альвеол, тем интенсивнее происходит диффузия газов.

Форма альвеол многоугольная, вход в альвеолу округлый, благодаря имеющимся эластическим и ретикулярным волокнам. В межальвеолярных перегородках имеются поры, через которые альвеолы сообщаются между собой.

Альвеолы выстланы изнутри клетками двух типов: дыхательными альвеолоцитами (их большинство) и гранулярными клетками (большими альвеолоцитами). Дыхательные альвеолоциты выстилают 97,5% поверхности альвеол. Это уплощенные клетки толщиной 0,1-0,2 мкм, они соприкасаются друг с другом и располагаются на собственной базальной мембране, обращенной в сторону капилляра. Такое строение способствует лучшему газообмену. Сеть кровеносных сосудов, оплетающих альвеолы, содержит несколько десятков кубических сантиметров крови. Красные кровяные тельца находятся в легочных пузырьках в течение 0,75 с в покое, а при физической нагрузке это время значительно сокращается. Однако столь короткого времени достаточно для газообмена.

Общая дыхательная поверхность альвеол у взрослого человека составляет около 120 квадратных метров. Кислород (1) через стенки альвеол (2) и капилляров (3) попадает в кровь (4), а углекислый газ (5) перемещается в противоположном направлении.

Большие альвеолоциты вырабатывают липопротеин сурфактант, этой пленкой поверхностно-активной смазки их сурфактанта, покрыты изнутри альвеолы. Сурфактант препятствует спаданию альвеол при выдохе, способствует удалению инородных частиц из дыхательных путей и обладает бактерицидной активностью. Большие альвеолоциты также располагаются на базальной мембране, считается, что они являются источником восстановления клеточной выстилки альвеол. Альвеолы оплетены густой сетью ретикулярных и коллагеновых волокон и кровеносных капилляров, которые прилежат к базальной мембране альвеолоцитов. Каждый капилляр граничит с несколькими альвеолами, что облегчает газообмен.

Производя попеременно вдох и выдох, человек вентилирует легкие, поддерживая в альвеолах относительно постоянный газовый состав. Человек дышит атмосферным воздухом с большим содержанием кислорода (20,9%) и низким содержанием углекислого газа (0,03%), а выдыхает воздух, в котором кислорода 16,3%, а углекислого газа 4%.

Состав альвеолярного воздуха значительно отличается от состава атмосферного, вдыхаемого воздуха. В нем меньше кислорода (14,2%). Азот и инертные газы, входящие в состав воздуха, в дыхании участия не принимают, и их содержание во вдыхаемом, выдыхаемом и альвеолярном воздухе практически одинаково. В выдыхаемом воздухе кислорода содержится больше, чем в альвеолярном потому, что к альвеолярному воздуху примешивается воздух, который находится в воздухоносных путях. При дыхании мы не полностью наполняем или освобождаем легкие. Даже после самого глубокого выдоха в легких всегда остается около 1,5 л воздуха. В покое человек обычно вдыхает и выдыхает около 0,5 л воздуха. При глубоком вдохе человек может вдохнуть дополнительно еще 3 л воздуха, а при глубоком выдохе - выдохнуть лишний 1 л воздуха. Такая величина как жизненная емкость легких (максимальный объем воздуха, выдыхаемого после самого глубокого вдоха) - важный антропометрический показатель. У мужчин он составляет 3,5-4,5 л, у женщин в среднем на 25% меньше. Под влиянием тренировки объем легких увеличивается до 6-7 л.

Вдох и выдох осуществляются путем изменения объема грудной клетки за счет сокращения и расслабления дыхательных мышц - межреберных и диафрагмы. При вдохе диафрагма уплощается, нижние отделы легких пассивно следуют за ней, давление воздуха в легких становится ниже атмосферного и воздух по трахее попадает в бронхи и легкие. При выдохе живот немного втягивается, кривизна купола диафрагмы увеличивается, легкие выталкивают воздух.

Легкие растут главным образом за счет увеличения объема альвеол. У новорожденного диаметр альвеолы 0,07 мм, Диаметр альвеол взрослого человека 0,2 мм. В старости объем альвеол увеличивается, их диаметр достигает 0,3-0,35 мм. Усиленный рост легких и дифференцировка их отдельных элементов происходят до 3 лет, К восьми годам число альвеол достигает числа их у взрослого человека. Особенно энергично альвеолы растут после 12 лет. Объем легких к 12 годам увеличивается в 10 раз по сравнению с объемом легких новорожденного, а концу периода полового созревания - в 20 раз (в основном за счет увеличения объема альвеол).