Схема гемопоэза форменных элементов крови. Эритропоэз и образование гемоглобина. класс - стволовая полипотентная клетка, способная к поддержанию своей популяции


Лекция № 1

Тема: Патология системы крови.

План:

1. Современная схема кроветворения.

2. Нарушение объема циркулирующей крови.

3. Нарушения красной крови:

а) анемии

I. Система крови включает 4 основных компонента:

1. Кроветворный орган- костный мозг, все форменные элементы крови в нормальных условиях образуются в костном мозге, который работает очень интенсивно- за сутки вырабатывает 300 млд. клеток крови.

2. Периферическая кровь- состоит из форменных элементов: эритроцитов, лейкоцитов, тромбоцитов и плазмы. В норме состав крови очень постоянен и колеблется в ограниченных пределах.

3. Кроворазрушающие органы: печень, селезенка, где происходит разрушение форменных элементов.

4. Аппарат, регулирующий этот комплекс:

· Нервная система,

· Гормональная система- гемопоэтины- это особые вещества, регулирующие пролиферацию и созревание клеток крови.

· Иммунная система.

В каждом из этих компонентов могут быть нарушения, которые приводят к болезням системы крови.

Кроветворение начинается уже в организме человеческого эмбриона. Первые кровяные клетки образуются из клеток мезенхимы одновременно с эндотелиальными клетками кровеносных сосудов. На 5-й недели жизни эмбриона кроветворным органом становится печень. В конце эмбрионального развития главная роль кроветворения переходит к костному мозгу. У детей кроветворение происходит во всех костях, поэтому костный мозг у них красный. С 4-5 лет, в трубчатых костях он постепенно атрофируется и замещается жировой тканью, и называется желтый костный мозг. У взрослых людей кроветворение происходит только в красном костном мозге губчатого вещества плоских костей- грудины, ребер, позвонков.

Современная схема кроветворения

1 класс- полипотентных клеток предшественников- это стволовая кроветворная клетка, которая является родоначальником всех клеток крови. Она быстро пролиферирует под действием гормонов и трансформируется в клетки II-го класса.

2 класс- частично- детерминированных полипотентных клеток предшественников:

а) миелопоэза

б) лимфопоэза. Они пролиферируют и дифференцируются в клетки III-го класса

3 класс- унипотентных клеток предшественников:

а)- клетка предшественница В-лимфоцитов;

б)- клетка предшественница Т-лимфоцитов;

в)- клетка, образующая колонию в культуре;



г) – эритропоэтинчувствительная клетка;

д)- тромбоцитопоэтинчувствительная клетка;

Клетки первых 3-х классов морфологически не отличаются друг от друга, их различают по биохимическим, гистохимическим и иммунохимическим особенностям.

Дальнейший рост и развитие клеток регулируются поэтинами, среди которых выделяют- эритро, -лейко, - и тромбоцит поэтинами. Под их действием усиливается миелопоэз, и клетки предшественницы начинают трансформировать в областные формы миелоцитарного, эритроцитарного и тромбоцитарного ростков крови. Или стимулируется лимфопоэз, и часть клеток выходит из костного мозга, через кровь поподает в тимус, где под влиянием гормонов они трансформируются в Т- лимфоциты и обеспечивает клеточный иммунитет. Другая часть остается в костном мозге и дифференцируется в В- лимфоциты, которые специализированно направлены на выработку антотел, в дальнейшем они превращаются в плазматические клетки.

Моноциты в крови находятся транзитом, затем переходят в макрофаги, которые поступают в различные ткани: печень, легкие, селезенку.

Класс- морфологически различимых клеток.

Класс- созревающих клеток.

Класс – зрелых клеток.

Лимфоциты, моноциты, лейкоциты, эритроциты, тромбоциты, имеющие специализированные функции.

Процесс созревания клеток крови в костном мозге называется- гемопоэз, в норме у человека- нормобластический тип кроветворения.

На разных этапах гемопоэза, в результате патогенных воздействий, могут возникнуть нарушения созревания клеток крови и развиваются болезни системы крови, которые проявляются:

1. Нарушением объема циркулирующей крови.

2. Изменением количественного и качественного состава красной крови.

3. Нарушением состава белой крови.

I. При заболеваниях объема циркулирующей крови может увеличиваться или снижаться, при этом соотношении форменных элементов и плазмы может сохраняться или изменяться (в номе ОЦК- 5 литров, 3-4 л- циркулирует, а 1-1.5 л в депо, селезенке, печени). Плазма- 55-60%; ФЭК- 40-45%.



Увеличения объема циркулирующей крови называется- гиперволемия.

1. пропорционального повышения числа эитроцитов и количество плазмы. Это бывает при переливании большого количества цельной крови.

2. увеличения количества эритроцитов, что бывает при длительной гипоксии, (у жителей высокогорья), и при опухолевом разрастании красного ростка костного мозга.

3. увеличения только объема плазмы, что бывает при введении большого количества физиологического раствора или кровозаменителей, а также при недостаточности выделительной функции почек, что приводит к зедержке жидкости в организме и разбавлению крови.

Длительная гиперволемия может привести к перегрузке сердца и стать причиной сердечной недостаточности.

Уменьшение объема циркулирующей крови называется-гиповолемия. Она может возникать в результате:

1.пропорционального снижения количества эритроцитов и плазмы,

что бывает после кровопотери.

2. уменьшения количества эритроцитов, это бывает после

Кровопотери, но в более поздние сроки.

3. уменьшения объема плазмы. Такое сгущение крови бывает при

обширных ожогах, при повышении температуры, при холере,

которая сопрвождается неукротимой рвотой и поносом.

Гиповолемия может привести к гипоксии, образованию тромбов в сосудах, и к сердечной недостаточности.

III. Нарушение красной крови проявляется изменением числа и свойств эритроцитов и периферической крови, а также изменением качественного их состава.

В норме эритроциты образуется в красном костном мозге из эритробластов, которые перед выходом в кровь теряет ядро, и в крови оно всегда безъядерные, одинаковой формы (двояковогнутой), величины (7-8 нм) и окраски.

Но при некоторых заболеваниях, изменяется качество эритроцитов и в крови могут появиться патологические формы эритроцитов:

Пойкилоцитоз- эритроциты неправильной формы.

Анизоцитоз- эритроциты разные по размеру (микро- и -макроцитоз).

Полихроматофилия- разная окраска эритроцитов.

Гиперхромия- усиление окраски эритроцитов, за счет увеличения содержание гемоглобина.

Гипохромия- ослабление окраски эритроцитов.

В эритроцитах иногда могут обнаруживаться включения: базофильные зерна- тельца Жоли- остатки ядра, базофильные кольца- кольцаКабо- остатки ядерной оболочки, и базофильная зернистость.

О грубом нарушении кроветворения, протекающего по эмбриональному типу, свидетельствует появлении крупных незрелых, содержащих ядра мегалобластов, которые встречаются только в эмбриональном периоде кроветворения. Затем они теряют ядро и превращаются в эритроциты, но более крупные, чем в норме и называются мегалоциты , а тип кроветворения- мегалобластический.

В норме количество эритроцитов- 4,5- 5,5 млн., но при некоторых заболеваниях количество эритроцитов может увеличиваться, что называется полицитомия, она может проявляться в форме:

эритроцитоза - как компенсаторно- приспособительная реакция на различные патогенные воздействия, особенно на гипоксию.

эритремии- это заболевание опухолевой природы, характеризующееся разрастаниемкрасного костногомозга.

Анемия - патологический процесс, характеризующийся уменьшением количества эритроцитов и содержание гемоглобина в единице объема крови.

Причины анемий:

Кровопотеря.

Недостаточная эритропоэтическая функция костного мозга, возникающая в результате дефицита веществ необходимых, для нормального кроветворения (железа, витамина В12; фолиевой кислоты).

Повышенное кроворазрушение (гемолиз) эритроцитов.

КЛАССИФИКАЦИЯ АНЕМИЙ

I. В зависимости от этиологии и патогенеза:

1. анемии, вследствие кровопотери (постгеморрагические).

2. анемии, вследствие нарушенного кроветворения

а) железодефицитная

б) В12 (фолиево)- дефицитная

3. анемии, вследствие повышенного кроворазрушения эритроцитов (гемолитические).

II. По течению:

2.хронические

III. По происхождению:

1.первичные - обусловленные наследственной патологией,

2.вторичные - вследствие какого- либо заболевания.

1.гиперхромные - ЦП выше 1.

2. гипохромные - ЦП ниже 1.

3.нормохромные - ЦП равен 1.

V. По степени регенерации костного мозга:

1. гиперрегенераторная

2. гипорегенераторная

3. арегенераторная.

Постгеморрагические анемии могут иметь острое и хроническое течение.

Острая постгеморрагическая анемия возникает при массивных кровотечениях при ранении крупного сосуда, разрыве маточной трубы при внематочной беременности, из сосудов желудка при язвенной болезни (желудочное кровотечение), при разъединении легочной артерии при туберкулезе легких.

Смерть в таких случаях наступает прежде, чем происходит обескровливание органов, и при вскрытии трупов анемизация органов малозаметна.

Хроническая постгеморрагическая анемия возникает в тех случаях, когда происходит медленная, но длительная потеря крови. Это бывает при небольших кровотечениях из распадающейся опухоли, кровоточащей язвы желудка, из полости матки, геморроидальных вен кишечника, гемофилии.

Жалобы больного: слабость, быстрая утомляемость, сонливость, головные боли, головокружение, обмороки. Внешним проявлением анемии является бледность кожных покровов и слизистых.

При хронической кровопотере возникает гипоксии тканей и органов, которая приводит к развитию жировой дистрофии миокарда, печени, почек, дистрофическим изменениям в клетках головного мозга. Появляются множественные точечные кровоизлияния в серозных и слизистых оболочках, во внутренних органах.

Анемии, вследствие нарушения кровообразования представлены дефицитными анемиями, возникающими при недостатке железа, витамина В12 фолиевой кислоты.

Железодефицитная анемия - развиваются при:

1.Недостаточном поступлении железа с пищей (у детей).

2. Недостаточности железа в связи с повышенным запросами организма у беременных и кормящих матерей.

3. При некоторых инфекциях.

4. После резекции желудка или кишечника.

Анемии, вследствие недостатка железа - всегда гипохромные.

Классификация лейкозов

В зависимости от степени увеличения в крови общего числа лейкоцитов различают:

Лейкемический лейкоз (десятки и сотни тыс. лейкоцитов в 1 мкл крови);

Сублейкемический (15-25 тыс. в 1 мк);

Лейкопенический (число лейкоцитов уменьшено, но лейкозные клетки обнаруживаются);

Алейкемический (количество лейкоцитов не изменено, лейкозные клетки в крови отсутствуют).

В зависимости от степени дифференцировки (зрелости) опухолевых клеток крови и характера течения лейкозы делятся на:

Хронические.

Для острого лейкоза характерна пролиферация недифференцированных или малодифференцированных, бластных клеток. Злокачественность течения и молодой возраст. При остром лейкозе в периферической крови определяется большое количество бластных клеток (более 50%) и характерен лейкемический провал – резкое повышение числа бластов и единичные зрелые клетки, при отсутствии переходных созревающих форм.

Выделяют следующие формы лейкозов:

1.миелобластный;

2.лимфобластный;

3.монобластный.

Для всех форм острого лейкоза характерно: замещение костного мозга молодыми бластными клетками, инфильтрация ими селезенки, печени, лимфоузлов, почек, головного мозга, высокая температура, увеличение селезенки, печени, лимфатических узлов; геморрагический синдром- множественные кровоизлияния в коже, слизистых оболочках, головном мозге; некротические процессы в зеве, глотке, миндалинах, желудке, быстрое нарастание изменений картины крови; снижение защитных сил организма, в результате чего присоединяется вторичная инфекция.

Больные умирают от кровоизлияния в головной мозг, желудочно – кишечных кровотечений или от присоединившейся инфекции – сепсиса.

Для хронического лейкоза характерна пролиферация дифференцированных зрелых клеток, относительная доброкачественность течения и пожилой возраст.

Хронические лейкозы делят в зависимости от того, какой росток крови поражен:

1.Лейкозы миелоцитарного происхождения

2.Лейкозы лимфоцитарного происхождения

3.Лейкозы моноцитарного происхождения

Для хронических лейкозов характерно постепенное нарастание проявлений болезни. В крови нарастает количество нейтрофильных лейкоцитов или лимфоцитов, увеличение селезенки, печени, лимфоузлов, лейкозная инфильтрация кожи, головного мозга, почек, сосудов.

Костный мозг – сочный, серо – красный или серо – желтый, гноевидный. Кровь – серо – красная, органы малокровны. Селезенка – резко увеличена до 6 -8 кг, на разрезе темно – красного цвета, иногда видны ишемические инфаркты. Фолликулы атрофичны, может быть склероз и гемосидероз пульпы. Печень увеличена до 5 – 6 кг, поверхность ее гладкая, ткань на разрезе серо – коричневая, гепатоциты в состоянии жирной дистрофии. Лимфоузлы – увеличены, мягкие, серо- красного цвета, сочные. Доброкачественное течение сменяется злокачественным. В крови появляются бластные формы клеток, число которых быстро нарастает, также быстро возрастает общее количество лейкоцитов (до нескольких миллионов) в крови наступает бластный криз, который часто приводит к смерти больного, но чаще больные умирают от инфекции и осложнений.

Наибольшее значение среди парапротеинемических лейкозов имеет миеломная болезнь. В основе заболевания лежит разрастание опухолевых миеломных клеток, как в костном мозге, так и вне его, которые секретируют белки – паропротеины, обнаруживаемые в крови и моче больных.

Миеломная болезнь протекает по типу алейкемического лейкоза в двух формах:

1.Солетарной плазмоцитомы

2.Генерализованной плазмоцитомы

При солетарной форме плазмоцитома образует опухолевый узел, который располагается в плоских костях (ребра, череп) и позвоночнике, что ведет к деструкции костной ткани. В участках разрастания миеломных клеток костное вещество становится мелкозернистым, затем разжижается и кость подвергается «пазушному рассасыванию». Такие участки имеют округлую форму с четкими краями. Кости черепа, ребра, позвонки на рентгеновских снимках выглядят как бы пробитыми во многих местах. В связи с разрушением костей развивается гиперкальциемия, и появляются известковые метастазы в мышцах и органах. Кости становятся ломкими, чем объясняется частые переломы.

При генерализованной форме, помимо костного мозга и костей разрастания миеломных клеток возникают в селезенке, печени, лифоузлах, почках и легких. Развивается амилоидоз, парапротеиноз миокарда, легких, парапротеинемический нефроз. В основе нефроза лежит засорение почек белком – парапротеином Бенс – Джонса, что приводит к склерозу мозгового, а затем коркового вещества и сморщиванию почек.

В связи с накоплением парапротеинов в крови развивается синдром повышенной вязкости крови и парапротеинемическая кома. Из -за резкого угнетения функции иммунной системы часто присоединяется вторичная инфекция (пневмония, пиелонефрит), от которой больной миеломной болезнью и умирает.

Нарушение автоматизма.

Автоматизм - способность органов и клеток к ритмичной деятельности под воздействием импульсов, зарождающихся самих этих клетках.

Система автоматизма сердца состоит из совокупности узлов:

Синусно-предсердный

Предсердно-желудочковый

Пучок Гиса

Сердечные миоциты - волокна Пуркинье.

В норме водителем ритма является синусно-предсердный узел, который генерирует импульсы с частотой 70-80 ударов в минуту, создавая синусовый ритм. При повышении его активности частота сердечных сокращений увеличивается до 120­

160 ударов в мин. и возникает синусовая тахикардия. Причины:

1. Физиологические:

Волнение, страх, радость

Действие кофеина, алкоголя.

2.Патологические:

Лихорадка

Неврозы сердца

Гиперфункция щитовидной железы

Ревмокардит

Туберкулез.

Проявляется сердцебиением и повышенной утомляемостью. Длительная тахикардия может вызвать переутомление сердечной мышцы и привести к

сердечной недостаточности.

При уменьшении активности синусо-предсердного узла частота сердечных сокращений урезается до 40 ударов в минуту и возникает синусовая брадикардия, которая может наблюдаться в норме у спортсменов и при повышении тонуса блуждающего нерва, а также:

При опухолях мозга

Менингитах

Инсульте

Повышении внутричерепного давления.

существенных нарушений кровообращения не вызывает.

Если в силу каких-либо причин активность синусно-предсердного узла подавляется, то водителем ритма становится предсердно-желудочковый узел, который генерирует импульсы с частотой 40-60 ударов в мин. и возникает атриовентрикулярный ритм, при подавлении его активности водителями ритма становятся сердечные проводящие миоциты, возникает идиовентрикулярный ритм с частотой 10-30 сокращений в минуту. Эти ритмы могут стать причиной сердечной недостаточности, т.К паузы между сокращениями продолжительны, нарушается коронарное кровообращение.

Нарушение возбудимости.

Возбудимость - это способность специализированной ткани отвечать на

раздражение.

Нарушение возбудимости проявляется:

Экстрасистола - внеочередное сокращение сердца, вызванное внеочереднымM импульсом.

Экстрасистолия - форма нарушения ритма сердца, характеризующаяся появлением экстрасистол. Субъективно ощущается, как перебои в работе сердца.

Причины:

Недостаточность коронарного кровообращения.

Воспалительные процессы в нервно-мышечной системе сердца.

Действие ядов, токсинов.

Заболевания желудка и печени, рефлекторно.

Пароксизмальная тахикардия - аритмия в виде внезапно начинающихся и внезапно заканчивающихся приступов тахикардии.

Причины:

Инфаркт миокарда

Стеноз митрального клапана

Заболевание желчного пузыря, рефлекторно.

Больные очень тяжело переносят начало и конец приступа, жалуются на сердцебиение, боли в сердце, головокружение и обмороки. Приступ может длиться минуты, часы и редко - ДНИ, и повторяются с различными промежутками.

Нарушения возбудимости опасны тем, что могут перейти в очень тяжелую форму аритмии - фибрилляцию желудочков.

Нарушение проводимости.

Проводимость - это способность проводящей системы проводить возбуждение по сердцу.

Проявляется:

Блокада сердца - нарушение проведения импульсов по проводящей системе сердца.

Инфаркт в области, проводящей системы.

Воспаление

Образование рубца, на месте инфаркта.

Различают неполную и полную блокады.

Неполная блокада - это увеличение времени проведения возбуждения.

Полная блокада бывает:

а) поперечная, наступает при полном перерыве проводимости между предсердиями и желудочками в области пучка Гиса, при этом предсердия и желудочки сокращаются независимо друг от друга, ритм их сокращений не совпадает.

б) продольная, возникает при перерыве проводимости по одной из ножек пучка Гиса, при этом левый желудочек сокращается, независим ю от правого в своем ритме.

Смешанные аритмии

При Одновременном нарушении возбудимости и проводимости миокарда возникают смешанные аритмии.

Трепетание предсердий - это очень частые, но правильные ритмичные и координированные сокращения предсердий до 280-300 ударов в мин..

Мерцание предсердий - это нескоординированные беспорядочные сокращения отдельных участков предсердий до 300- 600 ударов в мин., которое переходит в фибрилляцию желудочков, очень опасную для жизни, Т.к. кровь из желудочков не поступает в аорту и легочной ствол, кровообращение прекращается и больной умирает от острой сердечной недостаточности.

Причины:

Пороки сердца

Кардиосклероз

Инфаркт миокарда

Тиреотоксикоз

Интоксикация.

Нарушение сократимости сердца встречается редко, в результате нарушения коронарного кровообращения.

II. Воспалительные процессы в сердце возникают в результате различных инфекций и интоксикации, и не является самостоятельным заболеванием, а осложняют другие болезни.

Воспалительный процесс может поражать одну оболочку сердца или всю его стенку, что называется панкардит.

Эндокардит - воспаление эндокарда, Т.е. внутренней оболочки сердца.

Инфекционные заболевания (сепсис, скарлатина, тиф, ангина, ревматизм);

Аллергические реакции (ревматизм, системная красная волчанка);

Интоксикация (уремия при ХПН);

Истощение.

Механизм развития эндокардита связан с инфекционным фактором, Т.К в результате непосредственного оседания микробов на внутреннюю оболочку сердца развивается воспаление, придается значение и реактивности организма. Воспаление эндокарда может возникнуть в любом его участке, поэтому различают: клапанный, хоральный, пристеночный.

Наибольшее клиническое значение имеет клапанный эндокардит, который чаще поражает митральный и аортальный клапаны, реже - клапаны правого сердца.

Как любое. воспаление эндокардит имеет стадии: альтерации, экссудации,

пролиферации. .

Начинается обычно эндокардит с повреждения эндотелия, покрывающего

эндокард.

Альтерации подвергается вся толща клапана с образованием язвы или полное разрушение клапана (язвенный эндокардит).

Деструктивные процессы сопровождаются образованием на поверх ости клапана тромботических масс (тромбоэндокардит) в виде бородавок или полипов (бородавчатый или полинозно-язвенный эндокардит).

Стадия экссудации представлена пропитыванием ткани клапана плазмой крови, клеточной инфильтрацией, что сопровождается набуханием и утолщением клапана.

Продуктивные изменения ведут к быстрому развитию склероза, деформации и срастанию створок клапана, что приводит к пор оку сердца.

Эндокардит резко осложняет течение основного заболевания, Т.К страдает функция сердца.

Осложнение - тромбоэмболия.

Исход - пороки сердца.

Миокардит - воспаление мышцы сердца.

Возникает обычно как осложнение различных заболеваний.

1. инфекции:

Вирусная (корь, полиомиелит, мононуклеоз, ОРЗ);

Бактериальная (дифтерия, скарлатина, туберкулез, сепсис);

Риккетсии (сыпной тиф).

2. аллергии (ревматизм).

Миокардит развивается в результате распространения инфекции гематогенным путем, Т.е. с током крови.

Различают:

Альтеративный;

Экссудативный;

Продуктивный миокардит, в зависимости от преобладания той или иной

фазы воспаления.

Проявляется поражением того или иного участка миокарда, или в тяжелых случаях всех отделов сердца, при этом сердце увеличено в размерах, дряблое,

полости растянуты, с тромботическими наложениями; мышца на разрезе пестрая. Течение миокардита может быть острое и хроническое.

Исход зависит от характера заболевания, которое он осложняет, и от степени повреждения сердечной мышцы.

В одних случаях может пройти без следа.

3кссудативный и продуктивный миокардиты могут привести к острой сердечной недостаточности.

Хронический миокардит приводит к диффузному кардиосклерозу и к хронической сердечной недостаточности.

Перикардит - воспаление наружной оболочки сердца, как висцерального, так и париетального ее листков.

Также является осложнением других заболеваний

1. инфекция (стрептококк, стафилококк, tbs, кишечная палочка);

2. аллергические реакции (введение сывороток, вакцин);

3. интоксикация (уремия при ОПН);

4. травмы, некроз.

Протекает в двух формах: .

1. Острый экссудативный перикардит:

Серозный

Фибринозный

Гнойный

Геморрагический

Смешанный.

2. Хронический слипчивый перикардит.

Серозный перикардит проявляется накоплением в полости перикарда серозного экссудата.

Исход благоприятный - экссудат рассасывается.

Фибринозный перикардит осложняет инфаркт миокарда, туберкулез, ревматизм. При этом в полости перикарда накапливается фибринозный экссудат, который окутывает сердце, перикард становится тусклым, шероховатым, на его поверхности появляются нити фибрина, напоминающие волосы, поэтому такое

сердце называют «волосатым». .

Исход: экссудат организуется, Т.е. прорастает соединительной тканью, и между листками перикарда образуются плотные спайки.

Гнойный перикардит является осложнением воспалительных процессов рядом лежащих органов - легких, плевры, средостения, лимфоузлов.

Протекает тяжело и может закончиться летально.

Геморрагический перикардит возникает при метастазах рака в сердце. Быстрое образование выпота может привести к тампонаде сердца. Хронический слипчивый перикардит проявляется экссудативно-продуктивным воспалением, развивается при туберкулезе, ревматизме.

При этом экссудат не рассасывается, а подвергается организации. Между листками перикарда образуются спайки, затем полость зарастает и склерозируется, сдавливая сердце. Часто в рубцовую ткань откладывается известь, и такое сердце называется «панцирное».

Исход: развивается застойный цирроз печени и хроническая сердечная недостаточность, смерть.

3. Пороки сердца - это стойкие отклонения в строении сердца, нарушающие его функцию.

Различают приобретенные и врожденные пороки.

Приобретенные пороки сердца характеризуются поражением клапанного аппарата и магистральных сосудов и возникают в результате заболеваний сердца после рождения.

Причины: ревматизм; атеросклероз; сифилис; бактериальный эндокардит; травма, бруцеллез;

Воспалительные процессы в клапанном аппарате сердца вызывают разрушение и деформацию створок или разрастание в них соединительной ткани, петрификацию и срастание створок друг с другом. Если в результате таких процессов клапаны перестают полностью закрывать отверстие, развивается недостаточность клапанов . Сращение створок клапанов ведет к сужению отверстий - стенозу . Чаще поражаются митральный и аортальный клапаны. При сочетании недостаточности клапанов и стеноза отверстия возникает

комбинированный порок сердца. ­

В результате поражения клапанов возникает нарушение гемодинамики.

При недостаточности митрального клапана во время систолы желудочка, часть крови возвращается в левое предсердие, а в аорту поступает крови меньше, таким образом, при диастоле левое сердце переполняется кровью, развивается компенсаторная гипертрофия стенки левого желудочка.

При стенозе отверстия митрального клапана, предсердно-желудочковое отверстие имеет вид узкой щели, напоминающей пуговичную петлю, при этом левый желудочек получает недостаточное количество крови, левое предсердие переполняется кровью, в результате возникает застой в крови в малом -круге кровообращения. Левое предсердие расширяется, стенка его утолщается,

эндокард склерозируется, становится белесоватым. Чтобы преодолеть повышенное кровяное давление в малом круге, сила сокращения стенки правого желудочка повышается, и мышца сердца гипертрофируется, полость желудочка расширяется.

Порок аортальных клапанов занимает, второе место по частоте. Заслонки полулунных клапанов срастаются между собой, утолщаются, в них откладывается известь, что приводит в одних случаях к преобладанию недостаточности клапанов, а в других - к стенозу аортального отверстия.

При недостаточности аортального клапан часть крови, поступающей в аорту во время систолы, возвращается обратно в желудочек во время диастолы. Поэтому диастолическое давление в артериях может падать дО О, что является характерным признаком аортальных пороков. Сердце при этом пороке подвергается значительной работе, что приводит к значительной гипертрофии левого желудочка (700-900г), такое сердце называется «бычьим». Эндокард левого желудочка утолщен и склерозирован.

Стеноз аортального клапана встречается редко и проявляется застоем крови в крупных венах. Если порок клапанов не ликвидируется хирургически, то развивается декомпенсация сердца, которая ведет к сердечно-сосудистой недостаточности.

Причины декомпенсации:

Обострение ревматического процесса;

Случайная инфекция;

Психическая травма.

Сердце становится дряблым, полости расширяются, в ушках его образуются тромбы. В мышечных волокнах - белковая и жировая дистрофия, в строме - очаги воспаления. В органах возникает венозный застой, появляется цианоз, отеки, водянка полостей. Сердечно - сосудистая недостаточность - частая причина смерти больных, страдающих пороком сердца.

Врожденные пороки возникают в результате нарушения формирования сердца

и сосудов в первую половину внутриутробного развития плода.

Причины:

Вирусная инфекция матери, ионизирующее излучение, сифилис,

алкоголизм родителей, наследственные заболевания.

Чаще всего встречаются пороки:

1. Незаращение овального отверстия в межпредсердной перегородке.

2. Незаращение артериального протока.

3. Дефект межжелудочковой перегородки.

4. Тетрада Фалло - сложный комбинированный порок (40-50%)

Дефект межжелудочковой перегородки

Сужение легочной артерии

Смещение устья аорты вправо

Гипертрофия правого желудочка.

Эти порки ведут к тяжелым расстройствам кровообращения, происходит смешение артериальной и венозной крови, резкие перегрузки отделов сердца, ведущие к его гипертрофии и последующей декомпенсации

1. Атеросклероз - это (от гр.- athere - кащица; sclerosis - уплотнение)

хроническое заболевание, возникающее в результате нарушения жирового и белкового обмена, характеризующееся поражением артерий эластического и мышечно-эластического типа в виде очагового отложения в интиме липидов и белков, вокруг которых разрастается соединительная ткань и образуется атеросклеротическая бляшка.

Этиология.

В развитии атеросклероза большое значение имеют предрасполагающие факторы:

1. гиперхолистеринемия.

2. метаболический фактор - нарушение жирового и белкового обменов

3. гормональный фактор, обусловленный заболеванием эндокринных желез

(сахарный диабет, гипотиреоз, ожирение)

4. артериальная гипертония.

5. сосудистый фактор - состояние сосудистой стенки.

6. стрессовые и конфликтные ситуации, ведущие к психоэмоциональному

перенапряжению

7. наследственно - конституциональное предрасположение.

Сущность процесса состоит в том, в интиме артерий крупного и среднего калибра появляются кашицеобразный жиробелковый детрит и очаговое разрастание соединительной ткани, что приводит к формированию атеросклеротической бляшки, суживающей просвет сосуда. Это связано с психо- ­эмоциональным перенапряжением, которое вызывает нарушения деятельности нервной и эндокринной систем, что приводит к изменению обмена веществ, состава крови и свойств стенки сосудов.

Стадии атеросклероза.

1 Долипидная. - характеризуется нарушением метаболизма и повреждением интимы продуктами нарушенного метаболизма.,

2. Липопдоз - отмечается очаговая инфильтрация интимы липидами и белками, что ведет к образованию жировых пятен и полос. Вокруг них располагаются макрофаги.

3. Липосклероз - вокруг жиробелковых масс разрастается соединительная ткань, последующее ее созревание ведет к формированию фиброзной бляшки.

4. Атероматоз - центpальная часть бляшки распадается и образуется аморфная масса, состоящая из жиров, белков, кристаллов холестерина, остатков эластических и коллагеновых волокон. Интима сосуда над бляшкой склерозируется и гиалинизируится, образуя покрышку бляшки. Атероматозная бляшка выступает в просвет сосуда и суживает его. Вокруг бляшки формируются массивные разрастания соединительной ткани.

5. Изъязвление - в дальнейшем покрышка бляшки отрывается и образуется атероматозная язва. Детрит выпадает в просвет сосуда и может стать источником эмболии. Края язвы подрытые, неровные, дНО образовано мышечным слоем стенки сосуда. На поверхности язвы образуются тромбы, которые могут быть пристеночными или обтурирующими.

6. Атерокальциноз - завершающая стадия, связана с отложением извести в атероматозные массы. Бляшка становится плотной, хрупкой и еще больше суживает просвет сосуда.

Атеросклероз имеет волнообразное течение, которое состоит из фаз:

а) прогрессирование

б) стабилизации

в) регрессирования

При прогрессировании заболевания нарастает липоидоз интимы сосудов и увеличивается количество жировых пятен и полос, при стихании болезни вокруг бляшек усиливается разрастание соединительной ткани и отложение в них солей кальция. Поэтому бляшки многослойны, состоят из чередующихся прослоек соединительной ткани с участием нерассосавшихся липидов в глубоких и более свежего выпадения липидов в поверхностных слоях покрышки.

П. Гипертоническая болезнь.

Хроническое заболевание, проявляющееся длительным и стойким повышением артериального давления.

Описана, как самостоятельное заболевание неврогенной природы. Отечественный клиницист Г.Ф. Ланг назвал ее «болезнью неотреогированных эмоций», болезнь конфликтных ситуаций.

В возникновении гипертонической болезни большую роль играет психоэмоциональное пере напряжение, которое ведет к нарушениям высшей нервной деятельности типа невроза и расстройству регуляции сосудистого тонуса, а также наследственный фактор и избыток соли в пище.

В течении болезни выделяют 3 стадии:

1 СТ. транзиторная - характеризуется периодическими подъемами артериального давления, которые возникают в результате спазма артериол во время конфликта. При этом стенка сосуда испытывает гипоксию, вызывающую в ней дистрофические изменения. Спазм сменяется параличом артериол, кровь в них застаивается, и гипоксия стенок сохраняется, в результате чего повышается их проницаемость. Стенки артериол пропитываются плазмой крови. После нормализации артериального давления плазма крови из стенок артериол удаляется, но остаются белки крови в стенках. В результате повышения нагрузки на сердце при подъемах артериального давления развивается компенсаторная гипертрофия левого желудочк

Современная теория кроветворения Современная теория кроветворения базируется на унитарной теории А.А. Максимова (1918), согласно которой все клетки крови происходят из единой родоначальной клетки, морфологически напоминающей лимфоцит. Подтверждение этой гипотезы было получено лишь в 60-е годы при введении смертельно облученным мышам донорского костного мозга. Клетки, способные восстанавливать гемопоэз после облучения или токсических воздействий, носят название «стволовых клеток» Подтверждение этой гипотезы было получено лишь в 60-е годы при введении смертельно облученным мышам донорского костного мозга. Клетки, способные восстанавливать гемопоэз после облучения или токсических воздействий, носят название «стволовых клеток»




Современная теория кроветворения Нормальное кроветворение поликлональное, т. е. осуществляется одновременно многими клонами. Размер индивидуального клона - 0,5-1 млн зрелых клеток Продолжительность жизни клона - не превышает 1 месяц, около 10% клонов существуют до полугода. Клональный состав кроветворной ткани полностью меняется в течение 1-4 месяцев. Постоянная замена клонов объясняется истощением пролиферативного потенциала стволовой кроветворной клетки, поэтому исчезнувшие клоны никогда не появляются вновь. Различные гемопоэтические органы заселены разными клонами и только некоторые из них достигают такой величины, что оккупируют более чем одну кроветворную территорию.


Дифференцировка клеток гемопоэза Клетки гемопоэза условно подразделены на 5-6 отделов, границы между которыми весьма размыты, а между отделами содержится много переходных, промежуточных форм. В процессе дифференцировки происходит постепенное снижение пролиферативной активности клеток и способности развиваться сначала во все кроветворные линии, а затем во все более ограниченное количество линий.


Дифференцировка клеток гемопоэза I отдел – тотипотентная эмбриональная стволовая клетка (ЭСК), находится на самом верху иерархической лестницы I отдел – тотипотентная эмбриональная стволовая клетка (ЭСК), находится на самом верху иерархической лестницы II отдел - пул поли - или мультипотентных стволовых кроветворных клеток (СКК) II отдел - пул поли - или мультипотентных стволовых кроветворных клеток (СКК) СКК обладают уникальным свойством - полипотентностью, т. е. способностью к дифференцировке во все без исключения линии гемопоэза. В клеточной культуре можно создать условия, когда возникающая из одной клетки колония содержит до 6 различных клеточных линий дифференцировки.


Стволовые кроветворные клетки СКК закладываются в период эмбриогенеза и расходуются последовательно, образуя сменяющие друг друга клоны более зрелых кроветворных клеток. 90% клонов являются короткоживущими, 10% клонов может функционировать в течение длительного времени. СКК обладают высоким, но ограниченным пролиферативным потенциалом, способны к ограниченному самоподдержанию, т. е. не бессмертны. СКК могут проделать приблизительно 50 клеточных делений, поддерживают продукцию кроветворных клеток в течение всей жизни человека. СКК могут проделать приблизительно 50 клеточных делений, поддерживают продукцию кроветворных клеток в течение всей жизни человека.


Стволовые кроветворные клетки Отдел СКК гетерогенен, представлен 2 категориями предшественников, обладающих различным пролиферативным потенциалом. Основная масса СКК находится в фазе покоя G0 клеточного цикла, обладает огромным пролиферативным потенциалом. При выходе из покоя СКК вступает на путь дифференцировки, снижая пролиферативный потенциал и ограничивая набор дифференцировочных программ. После нескольких циклов деления (1-5) СКК может вернуться вновь в состояние покоя, при этом их состояние покоя менее глубоко и при наличии запроса они отвечают быстрее, приобретая маркеры определенных линий дифференцировок в культуре клеток за 1-2 дня, тогда как исходным СКК требуется дней. Длительное поддержание кроветворения обеспечивается резервными СКК. Необходимость срочного ответа на запрос удовлетворяется за счет СКК, прошедших дифференцировку и находящихся в состоянии быстро мобилизуемого резерва.


Стволовые кроветворные клетки Гетерогенность пула СКК и степень их дифференцировки устанавливается на основе экспрессии ряда дифференцировочных мембранных антигенов. Среди СКК выделены: примитивные мультипотентные предшественники (CD34+Thyl+) примитивные мультипотентные предшественники (CD34+Thyl+) более дифференцированные предшественники, характеризующиеся экспрессией антигена гистосовместимости II класса (HLA-DR), CD38. более дифференцированные предшественники, характеризующиеся экспрессией антигена гистосовместимости II класса (HLA-DR), CD38. Истинные СКК не экспрессируют линейно специфические маркеры и дают рост всем линиям гемопоэтических клеток. Количество СКК в костном мозге - около 0,01%, а вместе с клетками-предшественниками - 0,05%.


Стволовые кроветворные клетки Одним из основных методов изучения СКК является метод колониеобразования in vivo или in vitro, поэтому иначе СКК называютколониеобразующими единицами (КОЕ). Истинные СКК способны к формированию колоний из бластных клеток (КОЕ-бластные). Сюда же относят клетки, формирующие селезеночные колонии (КОЕс). Эти клетки способны полностью восстанавливать гемопоэз.


Дифференцировка клеток гемопоэза III отдел - По мере снижения пролиферативного потенциала СКК дифференцируются в полиолигопотентные коммитированные клетки- предшественники, имеющие ограниченную потентность, так как коммитированы (commit - принятие на себя обязательств) к дифференцировке в направлении 2-5 гемопоэтических клеточных линий. Полиолигопотентные коммитированные предшественники КОЕ-ГЭММ (гранулоцитарно-эритроцитарно- макрофагально-мегакариоцитарные) дают начало 4 росткам гемопоэза, КОЕ-ГМ - двум росткам. КОЕ-ГЭММ являются общим предшественником миелопоэза. Они имеют маркер CD34, маркер миелоидной линии CD33, детерминанты гистосовместимости HLA-A, HLA-B, HLA-C, HLA-DR.


Дифференцировка клеток гемопоэза Клетки IV отдела - монопотентные коммитированные предшественники являются родоначальными для одного ростка гемопоэза: КОЕ-Г для гранулоцитарного, КОЕ-Г для гранулоцитарного, КОЕ-М - для моноцитарно-макрофагального, КОЕ-М - для моноцитарно-макрофагального, КОЕ-Э и БОЕ-Э (бурстобразующая единица) - предшественники эритроидных клеток, КОЕ-Э и БОЕ-Э (бурстобразующая единица) - предшественники эритроидных клеток, КОЕ-Мгкц - предшественники мегакариоцитов КОЕ-Мгкц - предшественники мегакариоцитов Все коммитированные клетки-предшественники имеют ограниченный жизненный цикл и не способны к возвращению в состояние клеточного покоя. Все коммитированные клетки-предшественники имеют ограниченный жизненный цикл и не способны к возвращению в состояние клеточного покоя. Монопотентные коммитированные предшественники экспрессируют маркеры соответствующей клеточной линии дифференцировки.


СКК и клетки-предшественники обладают способностью к миграции - выходу в кровь и возвращению в костный мозг, что получило название homing-effect (инстинкт дома). Именно это их свойство обеспечивает обмен кроветворных клеток между разобщенными кроветворными территориями, позволяет использовать их для трансплантации в клинике. СКК и клетки-предшественники обладают способностью к миграции - выходу в кровь и возвращению в костный мозг, что получило название homing-effect (инстинкт дома). Именно это их свойство обеспечивает обмен кроветворных клеток между разобщенными кроветворными территориями, позволяет использовать их для трансплантации в клинике.


Дифференцировка клеток гемопоэза V отдел морфологически распознаваемых клеток включает: дифференцирующиеся, дифференцирующиеся, созревающие созревающие зрелые клетки всех 8 клеточных линий, начиная с бластов, большинство из которых имеют характерные морфоцитохимические особенности. зрелые клетки всех 8 клеточных линий, начиная с бластов, большинство из которых имеют характерные морфоцитохимические особенности.


Регуляция гемопоэза Кроветворная ткань - динамичная, постоянно обновляющаяся клеточная система организма. В минуту в кроветворных органах образуется более 30 млн клеток. В течение жизни человека - около 7 тонн. В минуту в кроветворных органах образуется более 30 млн клеток. В течение жизни человека - около 7 тонн. По мере созревания, образующиеся в костном мозге клетки, равномерно поступают в кровеносное русло. Эритроциты циркулируют в крови суток, тромбоциты - около 10 суток, нейтрофилы - менее 10 ч. Ежедневно теряется 1х10¹¹ клеток крови, что восполняется «клеточной фабрикой» - костным мозгом. При повышении запроса на зрелые клетки (кровопотеря, острый гемолиз, воспаление), производство может быть увеличено в течение нескольких часов в раз. Увеличение клеточной продукции обеспечивается гемопоэтическими факторами роста


Регуляция гемопоэза Гемопоэз инициируется ростовыми факторами, цитокинами и непрерывно поддерживается благодаря пулу СКК. Стволовые кроветворные клетки стромозависимы и воспринимают короткодистантные стимулы, получаемые ими при межклеточном контакте с клетками стромального микроокружения. По мере дифференцировки клетка начинает реагировать на дальнедействующие гуморальные факторы. Эндогенная регуляция всех этапов гемопоэза осуществляется цитокинами через рецепторы на клеточной мембране, посредством которых про водится сигнал в ядро клетки, где происходит активация соответствующих генов. Основными продуцентами цитокинов являются моноциты, макрофаги, активированные Т -лимфоциты, стромальные элементы - фибробласты, эндотелиальные клетки и др. Основными продуцентами цитокинов являются моноциты, макрофаги, активированные Т -лимфоциты, стромальные элементы - фибробласты, эндотелиальные клетки и др.


Регуляция гемопоэза Обновление СКК происходит медленно и при готовности к дифференцировке (процесс коммитирования), они выходят из состояния покоя (Go - фаза клеточного цикла) и становятся коммитированными. Это означает, что процесс стал необратимым и такие клетки, управляемые цитокинами, пройдут все стадии развития вплоть до конечных зрелых элементов крови. Регуляторы гемопоэза Выделяют позитивные и негативные регуляторы гемопоэза. Позитивные регуляторы необходимы: для выживания СКК и их пролиферации, для выживания СКК и их пролиферации, для дифференцировки и созревания более поздних стадий гемопоэтических клеток. для дифференцировки и созревания более поздних стадий гемопоэтических клеток. К ингибиторам (негативные регуляторы) пролиферативной активности СКК и всех видов ранних гемопоэтических предшественников относят: трансформирующий ростовой фактор β (TGF-β), трансформирующий ростовой фактор β (TGF-β), макрофагальный воспалительный белок (MIP-1α), макрофагальный воспалительный белок (MIP-1α), фактор некроза опухоли а (ФНО-α), фактор некроза опухоли а (ФНО-α), интерферон -а интерферон -а интерферон -у, интерферон -у, кислые изоферритины, кислые изоферритины, лактоферрин лактоферрин другие факторы. другие факторы.


Факторы регуляции гемопоэза Факторы регуляции гемопоэза подразделяются на короткодистантные (для СКК) и дальнодействующие для коммитированных предшественников и созревающих клеток. В зависимости от уровня дифференцировки клетки факторы регуляции делят на 3 основных класса: 1. Факторы, влияющие на ранние СКК: фактор стволовых клеток (ФСК), фактор стволовых клеток (ФСК), гранулоцитарный колониестимулирующий фактор (Г - КСФ), гранулоцитарный колониестимулирующий фактор (Г - КСФ), интерлейкины (ИЛ-6, ИЛ-11, ИЛ-12), интерлейкины (ИЛ-6, ИЛ-11, ИЛ-12), ингибиторы, которые тормозят выход СКК в клеточный цикл из состояния покоя (MIP-1α, TGF-β, ФНО-α, кислые изоферритины и др.). ингибиторы, которые тормозят выход СКК в клеточный цикл из состояния покоя (MIP-1α, TGF-β, ФНО-α, кислые изоферритины и др.). Эта фаза регуляции СКК не зависит от запросов организма. Эта фаза регуляции СКК не зависит от запросов организма.


Факторы регуляции гемопоэза 2. Линейно-неспецифические факторы: ИЛ-3, ИЛ-3, ИЛ-4, ИЛ-4, ГМ-КСФ (для гранулоцитомонопоэза). ГМ-КСФ (для гранулоцитомонопоэза). 3. Позднедействующие линейно-специфические факторы, которые поддерживают пролиферацию и созревание коммитированных предшественников и их потомков: эритропоэтин, эритропоэтин, тромбопоэтин, тромбопоэтин, колониестимулирующие факторы (Г-КСФ, М-КСФ, ГМ- КСФ), колониестимулирующие факторы (Г-КСФ, М-КСФ, ГМ- КСФ), ИЛ-5. ИЛ-5. Один и тот же ростовой фактор может действовать на разнообразные клетки-мишени на различных этапах дифференцировки, что обеспечивает взаимозаменяемость молекул, регулирующих гемопоэз.


Регуляция гемопоэза Активация и функционирование клеток зависит от многих цитокинов. Клетка начинает дифференцировку только после взаимодействия с факторами роста, но в выборе направления дифференцировки они не участвуют. Содержание цитокинов определяет количество продуцируемых клеток, число проделываемых клеткой митозов. Так, после кровопотери снижение рО2 в почках приводит к усилению продукции эритропоэтина, под действием которого эритропоэтинчувствительные эритроидные клетки - предшественники костного мозга (БОЕ-Э), увеличивают на 3- 5 число митозов, что повышает образование эритроцитов в раз. Число тромбоцитов в крови регулирует выработку фактора роста и развитие клеточных элементов мегакариоцитопоэза. Еще одним регулятором гемопоэза является апоптоз - запрограммированная клеточная смерть Еще одним регулятором гемопоэза является апоптоз - запрограммированная клеточная смерть

Кроветворение (гемоцитопоэз)процесс образования форменных элементов крови.

Различают два вида кроветворения:

миелоидное кроветворение:

  • эритропоэз;
  • гранулоцитопоэз;
  • тромбоцитопоэз;
  • моноцитопоэз.

лимфоидное кроветворение:

  • Т-лимфоцитопоэз;
  • В-лимфоцитопоэз.

Кроме того, гемопоэз подразделяется на два периода:

  • эмбриональный;
  • постэмбриональный.

Эмбриональный период гемопоэза приводит к образованию крови как ткани и потому представляет собой гистогенез крови . Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови как ткани.

Эмбриональный период гемопоэза осуществляется поэтапно, сменяя разные органы кроветворения. В соответствии с этим эмбриональный гемопоэз подразделяется на три этапа:

  • желточный;
  • гепато-тимусо-лиенальный;
  • медулло-тимусо-лимфоидный.

Наиболее важными моментами желточного этапа являются:

  • образование стволовых клеток крови;
  • образование первичных кровеносных сосудов.

Несколько позже (на 3-ей неделе) начинают формироваться сосуды в мезенхиме тела зародыша, однако они являются пустыми щелевидными образованиями. Довольно скоро сосуды желточного мешка соединяются с сосудами тела зародыша, по этим сосудам стволовые клетки мигрируют в тело зародыша и заселяют закладки будущих кроветворных органов (в первую очередь печень), в которых затем и осуществляется кроветворение.

Гепато-тимусо лиенальный

этап гемопоэза осуществляется в начале в печени, несколько позже в тимусе (вилочковой железе), а затем и в селезенке. В печени происходит (только экстраваскулярно) в основном миелоидное кроветворение, начиная с 5-ой недели и до конца 5-го месяца, а затем постепенно снижается и к концу эмбриогенеза полностью прекращается. Тимус закладывается на 7-8-й неделе, а несколько позже в нем начинается Т-лимфоцитопоэз, который продолжается до конца эмбриогенеза, а затем в постнатальном периоде до его инволюции (в 25-30 лет). Процесс образования Т-лимфоцитов в этот момент носит название антиген независимая дифференцировка . Селезенка закладывается на 4-й неделе, с 7-8 недели она заселяется стволовыми клетками и в ней начинается универсальное кроветворение, то есть и миелоилимфопоэз. Особенно активно кроветворение в селезенке протекает с 5-го по 7-ой месяцы внутриутробного развития плода, а затем миелоидное кроветворение постепенно угнетается и к концу эмбриогенеза (у человека) оно полностью прекращается. Лимфоидное же кроветворение сохраняется в селезенке до конца эмбриогенеза, а затем и в постэмбриональном периоде.

Следовательно, кроветворение на втором этапе в названных органах осуществляется почти одновременно, только экстраваскулярно, но его интенсивность и качественный состав в разных органах различны.

Медулло-тимусо-лимфоидный этап кроветворения

Закладка красного костного мозга начинается со 2-го месяца, кроветворение в нем начинается с 4-го месяца, а с 6-го месяца он является основным органом миелоидного и частично лимфоидного кроветворения, то есть является универсальным кроветворным органом. В то же время в тимусе, в селезенке и в лимфатических узлах осуществляется лимфоидное кроветворение. Если красный костный мозг не в состоянии удовлетворить возросшую потребность в форменных элементах крови (при кровотечении), то гемопоэтическая активность печени, селезенки может активизироваться - экстрамедуллярное кроветворение.

Постэмбриональный период кроветворения - осуществляется в красном костном мозге и лимфоидных органах (тимусе, селезенке, лимфатических узлах, миндалинах, лимфоидных фолликулах).

Сущность процесса кроветворения заключается в пролиферации и поэтапной дифференцировке стволовых клеток в зрелые форменные элементы крови.

Теории кроветворения

  • унитарная теория (А. А. Максимов, 1909 г.) - все форменные элементы крови развиваются из единого предшественникастволовой клетки;
  • дуалистическая теория предусматривает два источника кроветворения, для миелоидного и лимфоидного;
  • полифилетическая теория предусматривает для каждого форменного элемента свой источник развития.

В настоящее время общепринятой является унитарная теория кроветворения, на основании которой разработана схема кроветворения (И. Л. Чертков и А. И. Воробьев, 1973 г.).

В процессе поэтапной дифференцировки стволовых клеток в зрелые форменные элементы крови в каждом ряду кроветворения образуются промежуточные типы клеток, которые в схеме кроветворения составляют классы клеток.

Всего в схеме кроветворения различают 6 классов клеток:

  • 1 класс - стволовые клетки;
  • 2 класс - полустволовые клетки;
  • 3 класс - унипотентные клетки;
  • 4 класс - бластные клетки;
  • 5 класс - созревающие клетки;
  • 6 класс - зрелые форменные элементы.

1 класс - стволовая полипотентная клетка, способная к поддержанию своей популяции.

По морфологии соответствует малому лимфоциту, является полипотентной , то есть способной дифференцироваться в любой форменный элемент крови. Направление дифференцировки стволовой клетки определяется уровнем содержания в крови данного форменного элемента, а также влиянием микроокружения стволовых клеток - индуктивным влиянием стромальных клеток костного мозга или другого кроветворного органа. Поддержание численности популяции стволовых клеток обеспечивается тем, что после митоза стволовой клетки одна из дочерних клеток становится на путь дифференцировки, а другая принимает морфологию малого лимфоцита и является стволовой. Делятся стволовые клетки редко (1 раз в полгода), 80 % стволовых клеток находятся в состоянии покоя и только 20 % в митозе и последующей дифференцировке. В процессе пролиферации каждая стволовая клетка образует группу или клон клеток и потому стволовые клетки в литературе нередко называются колоние-образующие единицы - КОЕ.

2 класс - полустволовые

ограниченно полипотентные (или частично коммитированные) клетки-предшественницы миелопоэза и лимфопоэза. Имеют морфологию малого лимфоцита. Каждая из них дает клон клеток, но только миелоидных или лимфоидных. Делятся они чаще (через 3-4 недели) и также поддерживают численность своей популяции.

3 класс - унипотентные поэтин-чувствительные клетки

Предшественницы своего ряда кроветворения. Морфология их также соответствует малому лимфоциту. Способны дифференцироваться только в один тип форменного элемента. Делятся часто, но потомки этих клеток одни вступают на путь дифференцировки, а другие сохраняют численность популяции данного класса. Частота деления этих клеток и способность дифференцироваться дальше зависит от содержания в крови особых биологически активных веществ - поэтинов , специфичных для каждого ряда кроветворения (эритропоэтины, тромбопоэтины и другие).

Первые три класса клеток объединяются в класс морфологически неидентифицируемых клеток, так как все они имеют морфологию малого лимфоцита, но потенции их к развитию различны.

4 класс - бластные

(молодые) клетки или бласты (эритробласты, лимфобласты и так далее). Отличаются по морфологии как от трех предшествующих, так и последующих классов клеток. Эти клетки крупные, имеют крупное рыхлое (эухроматин) ядро с 2 4 ядрышками, цитоплазма базофильна за счет большого числа свободных рибосом. Часто делятся, но дочерние клетки все вступают на путь дальнейшей дифференцировки. По цитохимическим свойствам можно идентифицировать бласты разных рядов кроветворения.

5 класс - класс созревающих клеток

Характерных для своего ряда кроветворения. В этом классе может быть несколько разновидностей переходных клеток - от одной (пролимфоцит, промоноцит), до пяти в эритроцитарном ряду. Некоторые созревающие клетки в небольшом количестве могут попадать в периферическую кровь (например, ретикулоциты, юные и палочкоядерные гранулоциты).

6 класс - зрелые форменные элементы крови

Однако следует отметить, что только эритроциты, тромбоциты и сегментоядерные гранулоциты являются зрелыми конечными дифференцированными клетками или их фрагментами. Моноцитыне окончательно дифференцированные клетки. Покидая кровеносное русло, они дифференцируются в конечные клетки - макрофаги . Лимфоциты при встрече с антигенами, превращаются в бласты и снова делятся.

В Т- и в В-лимфоцитопоэзе выделяют три этапа:

  • костномозговой этап;
  • этап антиген-независимой дифференцировки, осуществляемый в центральных иммунных органах;
  • этап антиген-зависимой дифференцировки, осуществляемый в периферических лимфоидных органах.

Первый этап Т-лимфоцитопоэза осуществляется в лимфоидной ткани красного костного мозга, где образуются следующие классы клеток:

  • 1 класс - стволовые клетки;
  • 2 класс - полустволовые клетки-предшественницы лимфоцитопоэза;
  • 3 класс - унипотентные Т-поэтинчувствительные клетки-предшественницы Т-лимфоцитопоэза, эти клетки мигрируют в кровеносное русло и с кровью достигают тимуса.

Второй этап - этап антигеннезависимой дифференцировки осуществляется в корковом веществе тимуса. Здесь продолжается дальнейший процесс Т-лимфоцитопоэза. Под влиянием биологически активного вещества тимозина , выделяемого стромальными клетками, унипотентные клетки превращаются в Т-лимфобласты - 4 класс, затем в Т-пролимфоциты - 5 класс, а последние в Т-лимфоциты - 6 класс.

Третий этап - этап антигенезависимой дифференцировки осуществляется в Т-зонах периферических лимфоидных органов - лимфоузлов, селезенки и других, где создаются условия для встречи антигена с Т-лимфоцитом (киллером, хелпером или супрессором), имеющим рецептор к данному антигену.

Первый этап В-лимфоцитопоэза осуществляется в красном костном мозге, где образуются следующие классы клеток:

  • 1 класс - стволовые клетки;
  • 2 класс - полустволовые клетки-предшественницы лимфопоэза;
  • 3 класс - унипотентные В-поэтинчувствительные клетки-предшественницы В-лимфоцитопоэза.

Второй этап антигеннезависимой дифференцировки у птиц осуществляется в специальном центральном лимфоидном органе - фабрициевой сумке.

Третий этап - антигензависимая дифференцировка осуществляется в В-зонах периферических лимфоидных органов (лимфатических узлов, селезенки и других) где происходит встреча антигена с соответствующим В-рецепторным лимфоцитом, его последующая активация и трансформация в иммунобласт.

В данной статье будет описана схема кроветворения. Существование нашего организма немыслимо без поддержания на высоком уровне функционирования как системы иммунитета, так и системы крови. Каждая составляющая нашего сложно устроенного тела выполняет свою специфическую работу, обеспечивающую в итоге существование.

К органам кроветворения относят железу тимус и костный мозг, лимфоузлы и селезенку, а также лимфоидную ткань в слизистых органов пищеварения, кожи и дыхания. Они расположены в разных местах, но по своей сути это общая система. В ней постоянно передвигается и обновляется кровь. В результате питательные вещества поступают в тканевую и лимфатическую жидкости.

Какие органы входят в состав этой жизнеобеспечивающей системы

Кроветворением или гемоцитопоэзом называют процесс, при котором образуются форменные элементы крови - эритроциты, лейкоциты, тромбоциты.

Органы кроветворения классифицируются в свою очередь на два вида:

  • Центральные.
  • Периферические.

К центральным можно отнести красный костный мозг, который представляет собой место образования эритроцитов, тромбоцитов, гранулосодержащих клеток крови и предшественников лимфоцитов, а также тимус - центральный орган лимфообразования.

Но схема кроветворения этим не ограничивается. В периферических органах происходит деление транспортированных из предыдущей группы Т- и В-лимфоцитов с проведением их дальнейшей специализации под влиянием антигенов в эффекторные клетки, которые осуществляют непосредственно функцию иммунной защиты, и клетки памяти.

Здесь же они и заканчивают свой жизненный цикл.

Схема кроветворения уникальна:

  • Ретикулярные клетки выполняют механическую функцию, осуществляют синтез компонентов основного вещества, обеспечивают специфичность клеток микроокружения.
  • Остеогенные клетки составляют эндост, обеспечивая более интенсивное кроветворение.
  • Адвентициальные клетки окружают кровеносные сосуды, покрывая более 50% наружной поверхности капилляров.
  • Эндотелиальные клетки синтезируют белок коллаген, гемопоэтины (стимуляторы кровообразования).
  • Макрофаги за счет наличия лизосом и фагосом уничтожают чужеродные клетки, участвуют в построении гемовой части гемоглобина, путем передачи ему трансферрина.
  • Межклеточное вещество - кладовая коллагена различных типов, гликопротеинов и протеогликанов.

Рассмотрим основные этапы кроветворения.

Эритропоэз

Процесс образования эритроцитов происходит в специальных эритробластических островках костного мозга. Такие островки представлены совокупностью макрофагов, окруженных клетками эритроцитарного ряда.

Именно эти эритроидные клетки, в свою очередь, берут свое начало от первоначальной колониеобразующей клетки (КОЕ-Э), участвующей во взаимодействии с группой макрофагов красного костного мозга. При этом все новообразованные клетки, начиная от проэритробласта и заканчивая ретикулоцитом, контактируют с фагоцитирующей клеткой за счет специального рецептора, который носит название сиалоадгезин.

Поэтому эти макрофаги, посредством окружения эритроцитарных клеток, являются как бы их "кормильцем", способствуя поступлению и накоплению в этих клетках крови не только веществ, стимулирующих процесс образования эритроцитов (эритропоэтин), но и витаминов кроветворения, таких как, например, витамин D3, и молекул ферритина. Таким образом, можно достаточно точно утверждать, что это микроокружение в постоянном режиме обеспечивает все новые и новые очаги эритропоэза.

Гранулоцитопоэз

Гранулоцитосодержащие гемопоэтические клетки занимают не центральное, а периферическое местоположение. Незрелые формы этих клеток крови окружены белковыми соединениями - протеогликанами. В процессе деления общее количество этих клеток более чем в 3 раза превышает число эритроцитов и в 20 раз превышает числовой показатель одноименных клеток, расположенных в периферической кровеносной системе.

Тромбоцитопоэз

Мегакариобластические и уже созревшие формы клеток (мегакариоциты) расположены так, что их часть цитоплазматической жидкости, расположенной по периферии, проходит через поровые отверстия внутрь сосуда, поэтому отделение тромбоцитов осуществляется именно в кровоток. То есть мегакариоциты красного костного мозга отвечают за образование тромбоцитов.

Лимфоцтопоэз и моноцитопоэз

В чем еще состоят особенности кроветворения?

Среди клеток миелоидного ряда имеют место и незначительные скопления лимфоцитарных и моноцитарных представителей кроветворения, окружающих сосуд.

В норме при адекватно осуществляющихся физиологических условиях только созревшие фирменные элементы способны к проникновению через отверстия в стенке синусов костного мозга, поэтому при обнаружении в мазке крови и его микроскопировании миелоцитов и эритробластов, смело можно утверждать о наличии патологического процесса.

Желтый костный мозг

К органам кроветворения относится и желтый костный мозг.

Medulla ossium flava заполняет диафизы трубчатых костей и содержит большое количество клеток адипоцтов (жировых клеток) с высоким уровнем насыщения этого жира пигментом липохромом, обеспечивая окраску в желтый цвет, отсюда и пошло название желтого костного мозга.

В условиях обычной жизнедеятельности этот орган не может выполнять функцию кровообразования. Но это не относится к состояниям, сопровождающимся развитием массивной кровопотери или шока различного генеза, при которых в тканях желтого мозга происходит образование очагов миелопоэза и запускается процесс дифференцировки поступающих сюда клеток, как стволовых, так и полустволовых.

Четкого отграничения одного вида костного мозга от другого нет. Это разделение относительно, так как незначительное количество адипоцитов (клеток medulla ossium flava) содержится и в красном костном мозге. Их взаимоотношение меняется в зависимости от возрастных критериев, условий жизни, характера питания, особенностей функционирования эндокринной, нервной и других немаловажных систем организма.

Вилочковая железа

Тимус - орган, относящийся к центральным органам лимфопоэза и иммуногенеза. Активно участвует в процессе кроветворения.

Из прибывших сюда костномозговых предшественников Т-лимфоцитарных клеток происходит процесс антигеннезависимой дифференцировки в зрелые формы Т-лимфоцитов, выполняющих функции как клеточного, так и гуморального звена иммунитета.

В нем имеется корковое и мозговое вещество. Клетки коркового составляющего этого органа отделены от циркулирующей крови посредством гематотимусного барьера, который препятствует воздействию на дифференцирующиеся лимфатические клетки избыточного количества антигенов.

Поэтому удаление вилочковой железы (тимэктомия), проведенное при опытах на новорожденных животных, приводит к резкому угнетению пролиферации лимфоцитов абсолютно во всех лимфатических тканях кроветворных органов. Падает концентрация лимфоцитов крови и лейкоцитов, наблюдаются явления атрофии органов, кровоизлияний, вследствие чего, организм не способен оказать сопротивление инфекционным агентам.

Селезенка

Самый крупный орган периферической системы кроветворения, участвующий в формировании гуморального и клеточного иммунитета, удалении старых и поврежденных эритроцитов и тромбоцитов ("кладбище эритроцитов"), депонирование крови и тромбоцитарных клеток крови (1/3 всего объема).

Лимфатические узлы

В их ткани осуществляется процесс антигензависимой пролиферации и последующей дифференцировки Т- и В-лимфоцитов в клетки-эффекторы и образованием Т- и В-клеток памяти.

Помимо обычных лимфоцитов, у некоторых представителей млекопитающих обнаружены гемолимфатические узлы, с содержащейся в их синусах кровью. У человека же такие узлы встречаются редко. Расположены по ходу почечных артерий околопочечной клетчатки, либо по ходу брюшинной части аорты и, крайне редко, в заднем средостении.

Единая иммунная система слизистых оболочек (MALT) - включает в себя лимфоциты слизистых желудочно-кишечного тракта, бронхо-легочной системы, мочеполовых путей и выводных протоков молочных и слюнных желез.

Продукты для кроветворения

Кровь выполняет важные функции, такие как транспортировка кислорода и питательных веществ к клеткам, удаление отходов через органы выделительной системы. Оптимальная работа человеческого организма в целом зависит от крови. Поэтому условия жизни и питание оказывают влияние на ее качество.

Продукты, способствующие кроветворению: шампиньоны, ячмень, грибы шиитаке, кукуруза, овес, рис, лист одуванчика, финики, виноград, логанова ягода, соевые бобы, дудник, пшеничные отруби, авокадо, ростки люцерны, артишок, свекла, капуста, сельдерей, морская капуста, шпинат, яблоки, абрикосы, пырей.

Нами подробно рассмотрена схема кроветворения.

КРОВЕТВОРЕНИЕ (ГЕМОПОЭЗ)

КРОВЕТВОРЕНИЕ (ГЕМОПОЭЗ)

Гемопоэзом (haemopoesis) называют развитие крови. Различают эмбриональный гемопоэз, который происходит в эмбриональный период и приводит к развитию крови как ткани, и постэмбриональный гемопоэз, который представляет собой процесс физиологической регенерации крови.

Развитие эритроцитов называют эритропоэзом, развитие гранулоцитов - гранутоцитопоэзом, тромбоцитов - тромбоцитопоэзом, развитие моноцитов - моноцитопоэзом, развитие лимфоцитов и иммуноцитов - лимфоцито-и иммуноцитопоэзом.

7.4.1. Эмбриональный гемопоэз

В развитии крови как ткани в эмбриональный период можно выделить три основных этапа, последовательно сменяющих друг друга: 1) мезобластический, когда начинается развитие клеток крови во внезаро-дышевых органах - мезенхиме стенки желточного мешка и хориона (с 3-й по 9-ю нед развития зародыша человека) и появляется первая генерация стволовых клеток крови; 2) печеночный, который начинается в печени с 5-6-й нед развития зародыша, когда печень становится основным органом гемопоэза, в ней образуется вторая генерация СКК. Кроветворение в печени достигает максимума через 5 мес и завершается перед рождением. СКК печени заселяют вилочковую железу (здесь, начиная с 7-8-й нед, развиваются Т-лимфоциты), селезенку (гемопоэз начинается с 12-й нед) и лимфатические узлы (гемопоэз отмечается с 10-й нед); 3) медуллярный (костномозговой) - появление третьей генерации СКК в костном мозге, где гемопоэз начинается с 10-й нед и постепенно нарастает к рождению, а после рождения костный мозг становится центральным органом гемопоэза.

Кроветворение в стенке желточного мешка. У человека оно начинается в конце 2-й - начале 3-й нед эмбрионального развития. В мезенхиме стенки желточного мешка обособляются зачатки сосудистой крови, или

кровяные островки. В них мезенхимные клетки теряют отростки, округляются и преобразуются в стволовые клетки крови. Клетки, ограничивающие кровяные островки, уплощаются, соединяются между собой и образуют эндотелиальную выстилку будущего сосуда. Часть СКК дифференцируются в первичные клетки крови (бласты), крупные клетки с базофиль-ной цитоплазмой и ядром, в котором хорошо заметны крупные ядрышки (рис. 7.14). Большинство первичных кровяных клеток митотически делятся и превращаются в первичные эритробласты, характеризующиеся крупным размером (мегалобласты). Это превращение совершается в связи с накоплением эмбрионального гемоглобина в цитоплазме бластов, при этом сначала образуются полихроматофильные эритробласты, а затем ацидофильные эри-тробласты с большим содержанием гемоглобина. В некоторых первичных эритробластах ядра подвергаются кариорексису и удаляются из клеток, в других клетках ядра сохраняются. В результате образуются безъядерные и ядросодержащие первичные эритроциты, отличающиеся большим размером от ацидофильных эритробластов и поэтому получившие название мегало-цитов. Такой тип кроветворения называется мегалобластическим. Он характерен для эмбрионального периода, но может появляться в постнатальном периоде при некоторых заболеваниях (злокачественное малокровие).

Наряду с мегалобластическим в стенке желточного мешка начинается нормобластическое кроветворение, при котором из бластов образуются вторичные эритробласты; сначала по мере накопления в их цитоплазме гемоглобина они превращаются в полихроматофильные эритробласты, далее в нормобласты, из которых образуются вторичные эритроциты (нормоци-ты); размеры последних соответствуют эритроцитам (нормоцитам) взрослого человека (см. рис. 7.14, а). Развитие эритроцитов в стенке желточного мешка происходит внутри первичных кровеносных сосудов, т. е. интраваску-лярно. Одновременно экстраваскулярно из бластов, расположенных вокруг сосудов, дифференцируется небольшое количество гранулоцитов - ней-трофилов и эозинофилов. Часть СКК остается в недифференцированном состоянии и разносится током крови по различным органам зародыша, где происходит их дальнейшая дифференцировка в клетки крови или соединительной ткани. После редукции желточного мешка основным кроветворным органом временно становится печень.

Кроветворение в печени. Печень закладывается примерно на 3-4-й нед эмбрионального развития, а с 5-й нед она становится центром кроветворения. Кроветворение в печени происходит экстраваскулярно, по ходу капилляров, врастающих вместе с мезенхимой внутрь печеночных долек. Источником кроветворения в печени служат стволовые клетки крови, из которых образуются бласты, дифференцирующиеся во вторичные эритроциты. Процесс их образования повторяет описанные выше этапы образования вторичных эритроцитов. Одновременно с развитием эритроцитов в печени образуются зернистые лейкоциты, главным образом нейтрофильные и ацидофильные. В цитоплазме бласта, становящейся более светлой и менее базофильной, появляется специфическая зернистость, после чего ядро приобретает неправильную форму. Кроме гранулоцитов, в печени формируют-

Рис. 7.14. Эмбриональный гемопоэз (по А. А. Максимову):

а - кроветворение в стенке желточного мешка зародыша морской свинки: 1 - мезенхимальные клетки; 2 - эндотелий стенки сосудов; 3 - первичные кровяные клетки-бласты; 4 - митотически делящиеся бласты; б - поперечный срез кровяного островка зародыша кролика 8,5 сут: 1 - полость сосуда; 2 - эндотелий; 3 - интра-васкулярные кровяные клетки; 4 - делящаяся кровяная клетка; 5 - формирование первичной кровяной клетки; 6 - энтодерма; 7 - висцеральный листок мезодермы; в - развитие вторичных эритробластов в сосуде зародыша кролика 13,5 сут: 1 - эндотелий; 2 - проэритробласты; 3 - базофильные эритробласты; 4 - поли-хроматофильные эритробласты; 5 - оксифильные (ацидофильные) эритробласты (нормобласты); 6 - оксифильный (ацидофильный) эритробласт с пикнотическим ядром; 7 - обособление ядра от оксифильного (ацидофильного) эритробласта (нор-мобласта); 8 - вытолкнутое ядро нормобласта; 9 - вторичный эритроцит; г - кроветворение в костном мозге зародыша человека с копчиково-теменной длиной тела 77 мм. Экстраваскулярное развитие клеток крови: 1 - эндотелий сосуда; 2 - бласты; 3 - нейтрофильные гранулоциты; 4 - эозинофильный миелоцит

ся гигантские клетки - мегакариоциты. К концу внутриутробного периода кроветворение в печени прекращается.

Кроветворение в тимусе. Вилочковая железа закладывается в конце 1-го мес внутриутробного развития, и на 7-8-й нед ее эпителий начинает заселяться стволовыми клетками крови, которые дифференцируются в лимфоциты тиму-

са. Увеличивающееся число лимфоцитов тимуса дает начало Т-лимфоцитам, заселяющим Т-зоны периферических органов иммунопоэза.

Кроветворение в селезенке. Закладка селезенки происходит в конце 1-го мес внутриутробного развития. Из вселяющихся в нее стволовых клеток происходит экстраваскулярное образование всех видов форменных элементов крови, т. е. селезенка в эмбриональном периоде представляет собой универсальный кроветворный орган. Образование эритроцитов и гранулоци-тов в селезенке достигает максимума на 5-м мес внутриутробного развития. После этого в ней начинает преобладать лимфоцитопоэз.

Кроветворение в лимфатических узлах. Первые закладки лимфатических узлов у человека появляются на 7-8-й нед эмбрионального развития. Большинство лимфатических узлов развиваются на 9-10-й нед. В этот же период начинается проникновение в лимфатические узлы стволовых клеток крови, из которых дифференцируются эритроциты, гранулоциты и мегака-риоциты. Однако формирование этих элементов быстро подавляется образованием лимфоцитов, составляющих основную часть клеток лимфатических узлов. Появление единичных лимфоцитов происходит уже на 8-15-й нед развития, однако массовое «заселение» лимфатических узлов предшественниками Т- и В-лимфоцитов начинается с 16-й нед, когда формируются посткапиллярные венулы, через стенку которых осуществляется процесс миграции клеток. Из клеток-предшественников дифференцируются лим-фобласты (большие лимфоциты), а далее средние и малые лимфоциты. Дифференцировка Т- и В-лимфоцитов происходит в Т- и В-зависимых зонах лимфатических узлов.

Кроветворение в костном мозге. Закладка костного мозга осуществляется на 2-м мес внутриутробного развития. Первые гемопоэтические элементы появляются на 12-й нед развития; в это время основную их массу составляют эритробласты и предшественники гранулоцитов. Из СКК в костном мозге формируются все форменные элементы крови, развитие которых происходит экстраваскулярно (см. рис. 7.14, г). Часть СКК сохраняются в костном мозге в недифференцированном состоянии, они могут расселяться по другим органам и тканям и являться источником развития клеток крови и соединительной ткани. Таким образом, костный мозг становится центральным органом, осуществляющим универсальный гемопоэз, и остается им в течение постнатальной жизни. Он обеспечивает стволовыми кроветворными клетками тимус и другие органы гемопоэза.

7.4.2. Постэмбриональный гемопоэз

Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови (клеточное обновление), который компенсирует физиологическое разрушение дифференцированных клеток. Миелопоэз происходит в миелоидной ткани (textus myeloideus), расположенной в эпифизах трубчатых и полостях многих губчатых костей (см. главу 14). Здесь развиваются форменные элементы крови: эритроциты, гранулоциты, моноциты, кровяные пластинки, предшественники лимфоцитов. В миелоид-

ной ткани находятся стволовые клетки крови и соединительной ткани. Предшественники лимфоцитов постепенно мигрируют и заселяют такие органы, как тимус, селезенка, лимфатические узлы и др.

Лимфопоэз происходит в лимфоидной ткани (textus lymphoideus), которая имеет несколько разновидностей, представленных в тимусе, селезенке, лимфатических узлах. Она выполняет основные функции: образование Т- и В-лимфоцитов и иммуноцитов (плазмоцитов и др.).

СКК являются плюрипотентными (полипотентными) предшественниками всех клеток крови и относятся к самоподдерживающейся популяции клеток. Они редко делятся. Впервые представление о родоначальных клетках крови сформулировал в начале XX в. А. А. Максимов, который считал, что по своему строению они сходны с лимфоцитами. В настоящее время это представление нашло подтверждение и дальнейшее развитие в новейших экспериментальных исследованиях, проводимых главным образом на мышах. Выявление СКК стало возможным при применении метода коло-ниеобразования.

Экспериментально (на мышах) показано, что при введении смертельно облученным животным (утратившим собственные кроветворные клетки) взвеси клеток красного костного мозга или фракции, обогащенной СКК, в селезенке появляются колонии клеток - потомков одной СКК. Пролиферативную активность СКК модулируют колониестимулирующие факторы (КСФ), интерлейкины (ИЛ-3 и др.). Каждая СКК в селезенке образует одну колонию и называется селезеночной колониеобразующей единицей (КОЕ-С). Подсчет колоний позволяет судить о количестве стволовых клеток, находящихся во введенной взвеси клеток. Таким образом, было установлено, что у мышей на 105 клеток костного мозга приходится около 50 стволовых клеток. Исследование очищенной фракции стволовых клеток с помощью электронного микроскопа позволяет сделать вывод, что по ультраструктуре они очень близки к малым темным лимфоцитам.

Исследование клеточного состава колоний выявляет две линии их диф-ференцировки. Одна линия дает начало мультипотентной клетке - родоначальнику гранулоцитарного, эритроцитарного, моноцитарного и мега-кариоцитарного дифферонов гемопоэза (КОЕ-ГЭММ). Вторая линия дает начало мультипотентной клетке - родоначальнику лимфопоэза (КОЕ-Л) (рис. 7.15). Из мультипотентных клеток дифференцируются олигопотент-ные (КОЕ-ГМ) и унипотентные родоначальные (прогениторные) клетки. Методом колониеобразования определены родоначальные унипотентные клетки для моноцитов (КОЕ-М), нейтрофилов (КОЕ-Гн), эозинофилов (КОЕ-Эо), базофилов (КОЕ-Б), эритроцитов (БОЕ-Э и КОЕ-Э), мегака-риоцитов (КОЕ-МГЦ), из которых образуются клетки-предшественники (прекурсорные). В лимфопоэтическом ряду выделяют унипотентные клетки - предшественники В-лимфоцитов и соответственно Т-лимфоцитов. Полипотентные (плюрипотентные и мультипотентные), олигопотентные и унипотентные клетки морфологически не различаются.

Все приведенные выше стадии развития клеток составляют четыре основных компартмента: I - стволовые клетки крови (плюрипотентные, полипо-

Рис. 7.15. Постэмбриональный гемопоэз, окраска азуром II-эозином (по Н. А. Юриной).

Стадии дифференцировки крови: I-IV - морфологически неидентифицируе-мые клетки; V, VI - морфологически идентифицируемые клетки. Б - базофил;

БОЕ - бурстобразующая единица; Г - гранулоциты; Гн - гранулоцит нейтрофильный; КОЕ - колониеобразующие единицы; КОЕ-С - селезеночная колониеобразующая единица; Л - лимфоцит; Лск - лимфоидная стволовая клетка; М - моноцит; Мег - мегакариоцит; Эо - эозинофил; Э - эритроцит. Ретикулоцит окрашен суправитально

тентные); II - коммитированные родоначальные клетки (мультипотентные); III - коммитированные родоначальные (прогенторные) олигопотентные и унипотентные клетки; IV - клетки-предшественники (прекурсорные).

Дифференцировка полипотентных клеток в унипотентные определяется действием ряда специфических факторов - эритропоэтинов (для эритро-бластов), гранулопоэтинов (для миелобластов), лимфопоэтинов (для лим-фобластов), тромбопоэтинов (для мегакариобластов) и др.

Из каждой клетки-предшественника образуется конкретный вид клеток. Клетки каждого вида при созревании проходят ряд стадий и в совокупности образуют компартмент созревающих клеток (V). Зрелые клетки представляют последний компартмент (VI). Все клетки V и VI компартментов морфологически можно идентифицировать (рис. 7.15).

Эритроцитопоэз

Родоначальником эритроидных клеток человека, как и других клеток крови, является полипотентная стволовая клетка крови, способная формировать в культуре костного мозга колонии. Полипотентная СКК в результате дивергентной дифференцировки дает два типа мультипотентных частично коммитированных кроветворных клеток: 1) коммитированные к лимфо-идному типу дифференцировки (Лск, КОЕ-Л); 2) КОЕ-ГЭММ - единицы, образующие смешанные колонии, состоящие из гранулоцитов, эритроцитов, моноцитов и мегакариоцитов (аналог КОЕ-С in vitro). Из второго типа мультипотентных кроветворных клеток дифференцируются унипотентные единицы: бурстобразующая (БОЕ-Э) и колониеобразующая (КОЕ-Э) эри-троидные клетки, которые являются коммитированными родоначальными клетками эритропоэза.

БОЕ-Э - взрывообразующая, или бурстобразующая, единица (burst - взрыв) по сравнению с КОЕ-Э является менее дифференцированной. БОЕ-Э может при интенсивном размножении быстро образовать крупную колонию клеток. БОЕ-Э в течение 10 сут осуществляет 12 делений и образует колонию из 5000 эритроцитарных клеток с незрелым фетальным гемоглобином (HbF). БОЕ-Э малочувствительна к эритропоэтину и вступает в фазу размножения под влиянием интерлейкина-3 (бурстпромоторная активность), вырабатываемого моноцитами - макрофагами и Т-лимфоцитами. Интерлейкин-3 (ИЛ-3) является гликопротеином с молекулярной массой 20-30 килодальтон. Он активирует ранние полипотентные СКК, обеспечивая их самоподдержание, а также запускает дифференцировку полипотент-ных клеток в коммитированные клетки. ИЛ-3 способствует образованию клеток (КОЕ-Э), чувствительных к эритропоэтину.

КОЕ-Э по сравнению с БОЕ-Э - более зрелая клетка. Она чувствительна к эритропоэтину, под влиянием которого размножается (в течение 3 сут делает 6 делений), формирует более мелкие колонии, состоящие примерно из 60 эри-троцитарных элементов. Количество эритроидных клеток, образуемых в сутки из КОЕ-Э, в 5 раз меньше аналогичных клеток, образуемых из БОЕ-Э.

Таким образом, БОЕ-Э содержат клетки-предшественники эритроцитов, которые способны генерировать тысячи эритроидных прекурсоров

Рис. 7.16. Последовательные стадии дифференцировки проэритробласта в эритроцит: А - проэритробласт; Б - базофильный эритробласт; В - полихроматофильный эритробласт; Г - ацидофильный эритробласт (нормобласт); Д - выталкивание ядра из ацидофильного эритробласта; Е - ретикулоцит; Ж - пикнотичное ядро; З - эритроцит. 1 - ядро; 2 - рибосомы и полирибосомы; 3 - митохондрии; 4 - гранулы гемоглобина

(предшественников). Они содержатся в малом количестве в костном мозге и крови благодаря частичному самоподдержанию и миграции из компарт-мента мультипотентных кроветворных клеток. КОЕ-Э является более зрелой клеткой, образующейся из пролиферирующей БОЕ-Э.

Эритропоэтин - гликопротеиновый гормон, образующийся в юкста-гломерулярном аппарате (ЮГА) почки (90 %) и печени (10 %) в ответ на снижение парциального давления кислорода в крови (гипоксия) и запускающий эритропоэз из КОЕ-Э. Под его влиянием КОЕ-Э дифференцируются в проэритробласты, из которых образуются эритробласты (базофиль-ные, полихроматофильные, ацидофильные), ретикулоциты и эритроциты. Образующиеся из КОЕ-Э эритроидные клетки морфологически идентифицируются (рис. 7.16). Сначала образуется проэритробласт.

Проэритробласт - клетка диаметром 14-18 мкм, имеющая большое круглое ядро с мелкозернистым хроматином, одно-два ядрышка, слабобазо-фильную цитоплазму, в которой содержатся свободные рибосомы и полисомы, слаборазвитые комплекс Гольджи и гранулярная эндоплазматическая сеть. Базофильный эритробласт - клетка меньшего размера (13-16 мкм). Его ядро содержит больше гетерохроматина. Цитоплазма клетки обладает хорошо выраженной базофильностью в связи с накоплением в ней рибосом, в которых начинается синтез Нb. Полихроматофильный эритробласт - клетка размером 10-12 мкм. Ее ядро содержит много гетерохроматина. В цитоплазме клетки накапливается синтезируемый на рибосомах НЬ, окрашивающийся эозином, благодаря чему она приобретает серовато-фиолетовый цвет. Проэритробласты, базофильные и полихроматофильные эритробла-сты способны размножаться путем митоза, поэтому в них часто видны фигуры деления.

Следующая стадия дифференцировки - образование ацидофильного (оксифилия) эритробласта (нормобласта). Это клетка небольшого размера (8-10 мкм), имеющая маленькое пикнотичное ядро. В цитоплазме эритро-

бласта содержится много НЬ, обеспечивающего ее ацидофилию (оксифи-лию) - окрашивание эозином в ярко-розовый цвет. Пикнотическое ядро выталкивается из клетки, в цитоплазме сохраняются лишь единичные органеллы (рибосомы, митохондрии). Клетка утрачивает способность к делению.

Ретикулоцит - постклеточная структура (безъядерная клетка) с небольшим содержанием рибосом, обусловливающих наличие участков базофи-лии, и преобладанием НЬ, что в целом дает многоцветную (полихромную) окраску (поэтому эта клетка получила название «полихроматофильный эритроцит»). При выходе в кровь ретикулоцит созревает в эритроцит в течение 1-2 сут. Эритроцит - это клетка, образующаяся на конечной стадии дифференцировки клеток эритроидного ряда. Период образования эритроцита, начиная со стадии проэритробласта, занимает 7 сут.

Таким образом, в процессе эритропоэза происходят уменьшение размера клетки в 2 раза (см. рис. 7.16); уменьшение размера и уплотнение ядра и его выход из клетки; уменьшение содержания РНК, накопление НЬ, сопровождаемые изменением окраски цитоплазмы - от базофильной до полихро-матофильной и ацидофильной; потеря способности к делению клетки. Из одной СКК в течение 7-10 сут в результате 12 делений образуется около 2000 зрелых эритроцитов.

Эритропоэз у млекопитающих и человека протекает в костном мозге в особых морфофункциональных ассоциациях, получивших название эри-тробластических островков, впервые описанных французским гематологом М. Бесси (1958). Эритробластический островок состоит из макрофага, окруженного одним или несколькими слоями эритроидных клеток, развивающихся из унипотентной КОЕ-Э, вступившей в контакт с макрофагом КОЕ-Э. Образующиеся из нее клетки (от проэритробласта до ретикулоцита) удерживаются в контакте с макрофагом его рецепторами (сиалоадгезинами и др.) (рис. 7.17, 7.18).

У взрослого организма потребность в эритроцитах обычно обеспечивается за счет усиленного размножения полихроматофильных эритробластов (гомопластический гемопоэз). Однако, когда потребность организма в эритроцитах возрастает (например, при потере крови), эритробласты начинают развиваться из предшественников, а последние - из стволовых клеток (гетеропластический эритропоэз).

В норме из костного мозга в кровь поступают только эритроциты и рети-кулоциты.

Гранулоцитопоэз

Источниками гранулоцитопоэза являются также СКК и мультипотент-ные КОЕ-ГЭММ (см. рис. 7.15). В результате дивергентной дифференци-ровки через ряд промежуточных стадий в трех различных направлениях образуются гранулоциты трех видов: нейтрофилы, эозинофилы и базофилы. Клеточные диффероны для гранулоцитов представлены следующими формами: СКК → КОЕ-ГЭММ → КОЕ-ГМ → унипотентные предшественники (КОЕ-Б, КОЕ-Эо, КОЕ-Гн) → миелобласт → промиелоцит → миелоцит →

Рис. 7.17. Динамика развития эритробластического островка (по М. Бесси и соавт., с изменениями):

а - схема: 1 - цитоплазма макрофага; 2 - отростки макрофага; 3 - базофильные эритробласты; 4 - полихроматофильные эритробласты; 5 - ацидофильный эритро-бласт; 6 - ретикулоцит; б - срез эритроидного островка: 1 - макрофаг; 2 - эритроциты; 3 - митотически делящийся эритробласт. Электронная микрофотография по Ю. М. Захарову. Увеличение 8000

Рис. 7.18. Развитие эритроцитов в печени плода человека:

а, б - 15-недельный плод (увеличение 6000); в - 20-недельный плод (увеличение 15 000). 1 - эксцентрично расположенное ядро эритробласта; 2 - обособление пикнотического ядра ацидофильного эритробласта; 3 - отделение пикнотического ядра с узким ободком цитоплазмы от ацидофильного эритробласта; 4 - ретикулоцит с единичными органеллами (указано стрелками). Электронная микрофотография (по Замбони)

Рис. 7.19. Дифференцировка нейтрофильного гранулоцита в костном мозге (по Д. Байнтону, М. Фарквару, Дж. Элиоту, с изменениями):

А - миелобласт; Б - промиелоцит; В - миелоцит; Г - метамиелоцит; Д - палоч-коядерный нейтрофильный гранулоцит (нейтрофил); Е - сегментоядерный нейтрофильный гранулоцит. 1 - ядро; 2 - первичные (азурофильные) гранулы; 3 - комплекс Гольджи; 4 - вторичные - специфические гранулы

метамиелоцит → палочкоядерный гранулоцит → сегментоядерный гранулоцит.

По мере созревания гранулоцитов клетки уменьшаются в размерах, изменяется форма их ядер от округлой до сегментированной, в цитоплазме накапливается специфическая зернистость (рис. 7.19).

Миелобласты (myeloblastus), дифференцируясь в направлении того или иного гранулоцита, дают начало промиелоцитам (promyelocytus) (см. рис. 7.15). Это крупные клетки, содержащие овальное или круглое светлое ядро, в котором имеется несколько ядрышек. Около ядра располагается ясно выраженная центросома, хорошо развиты комплекс Гольджи, лизосомы. Цитоплазма слегка базофильна. В ней накапливаются первичные (азуро-фильные) гранулы, которые характеризуются высокой активностью мие-лопероксидазы, а также кислой фосфатазы, т. е. относятся к лизосомам. Промиелоциты делятся митотически. Специфическая зернистость отсутствует.

Нейтрофильные миелоциты (myelocytus neutrophilicus) имеют размер от 12 до 18 мкм. Эти клетки размножаются митозом. Цитоплазма их становится диффузно ацидофильной, в ней появляются наряду с первичными вторичные (специфические) гранулы, характеризующиеся меньшей электронной плотностью. В миелоцитах обнаруживаются все органеллы. Количество митохондрий невелико. Эндоплазматическая сеть состоит из пузырьков. Рибосомы располагаются на поверхности мембранных пузырьков, а также диффузно в цитоплазме. По мере размножения нейтрофильных миелоцитов круглое или овальное ядро становится бобовидным, начинает окрашиваться темнее, хроматиновые глыбки становятся грубыми, ядрышки исчезают.

Такие клетки уже не делятся. Это метамиелоциты (metamyelocytus) (см. рис. 7.19). В цитоплазме увеличивается число специфических гранул. Если метамиелоциты встречаются в периферической крови, то их называют юными формами. При дальнейшем созревании их ядро приобретает вид изогнутой палочки. Подобные формы получили название палочкоядерных гранулоцитов. Затем ядро сегментируется, и клетка становится сегментоядер-ным нейтрофильным гранулоцитом. Полный период развития нейтрофильного гранулоцита составляет около 14 сут, при этом период пролиферации продолжается около 7,5 сут, а постмитотический период дифференцировки - около 6,5 сут.

Эозинофильные (ацидофильные) миелоциты (см. рис. 7.15) представляют собой клетки округлой формы диаметром (на мазке) около 14-16 мкм. По характеру строения ядра они мало отличаются от нейтрофильных миелоци-тов. Цитоплазма их заполнена характерной эозинофильной зернистостью. В процессе созревания миелоциты митотически делятся, а ядро приобретает подковообразную форму. Такие клетки называются ацидофильными мета-миелоцитами. Постепенно в средней части ядро истончается и становится двудольчатым, в цитоплазме увеличивается количество специфических гранул. Клетка утрачивает способность к делению.

Среди зрелых форм различают палочкоядерные и сегментоядерные эозино-фильные гранулоциты с двудольчатым ядром.

Базофильные миелоциты (см. рис. 7.15) встречаются в меньшем количестве, чем нейтрофильные или эозинофильные миелоциты. Размеры их примерно такие же, как и эозинофильных миелоцитов; ядро округлой формы, без ядрышек, с рыхлым расположением хроматина. Цитоплазма базофильных миелоцитов содержит в широко варьирующих количествах специфические базофильные зерна неодинаковых размеров, которые проявляют мета-хромазию при окрашивании азуром и легко растворяются в воде. По мере созревания базофильный миелоцит превращается в базофильный метамиелоцит, а затем в зрелый базофильный гранулоцит.

Все миелоциты, особенно нейтрофильные, обладают способностью фагоцитировать, а начиная с метамиелоцита, приобретают подвижность.

У взрослого организма потребность в лейкоцитах обеспечивается за счет размножения миелоцитов. При кровопотерях, например, миелоциты начинают развиваться из миелобластов, а последние из унипотентных и поли-потентных СКК.

Мегакариоцитопоэз. Тромбоцитопоэз

Кровяные пластинки образуются в костном мозге из мегакариоцитов - гигантских по величине клеток, которые дифференцируются из СКК, проходя ряд стадий. Последовательные стадии развития можно представить следующим клеточным диффероном: СКК → КОЕ-ГЭММ → КОЕ-МГЦ → мегакариобласт → промегакариоцит → мегакариоцит → тромбоциты (кровяные пластинки). Весь период образования пластинок составляет около 10 сут (см. рис. 7.15).

Мегакариобласт (megacaryoblastus) - клетка диаметром 15-25 мкм, имеет ядро с инвагинациями и относительно небольшой ободок базофильной цитоплазмы. Клетка способна к делению митозом, иногда содержит два ядра. При дальнейшей дифференцировке утрачивает способность к митозу и делится путем эндомитоза, при этом увеличиваются плоидность и размер ядра.

Промегакариоцит (promegacaryocytus) - клетка диаметром 30-40 мкм, содержит полиплоидные ядра - тетраплоидные, октаплоидные (4 n, 8 n), несколько пар центриолей. Объем цитоплазмы возрастает, в ней начинают накапливаться азурофильные гранулы. Клетка также способна к эндоми-тозу и дальнейшему увеличению плоидности ядер.

Мегакариоцит (megacaryocytus) - дифференцированная форма. Среди мегакариоцитов различают резервные клетки, не образующие пластинок, и зрелые активированные клетки, образующие кровяные пластинки. Резервные мегакариоциты диаметром 50-70 мкм, имеют очень большое, дольчатое ядро с набором хромосом 16-32 n; в их цитоплазме имеются две зоны - околоядерная, содержащая органеллы и мелкие азурофильные гранулы, и наружная (эктоплазма) - слабобазофильная, в которой хорошо развиты элементы цитоскелета. Зрелый, активированный мегакариоцит - крупная клетка диаметром 50-70 мкм (иногда даже до 100 мкм). Содержит очень крупное, сильно дольчатое полиплоидное ядро (до 64 n). В ее цитоплазме накапливается много азурофильных гранул, которые объединяются в группы. Прозрачная зона эктоплазмы также заполняется гранулами и вместе с плазмолеммой формирует псевдоподии в виде тонких отростков, направленных к стенкам сосудов. В цитоплазме мегакариоцита наблюдается скопление линейно расположенных пузырьков, которые разделяют зоны цитоплазмы с гранулами. Из пузырьков формируются демаркационные мембраны, разделяющие цитоплазму мегакариоцита на участки диаметром 1-3 мкм, содержащие по 1-3 гранулы (будущие кровяные пластинки). В цитоплазме можно выделить три зоны - перинуклеарную, промежуточную и наружную. В наружной зоне цитоплазмы наиболее активно идут процессы демаркации, формирования протромбоцитарных псевдоподий, проникающих через стенку синусов в их просвет, где и происходит отделение кровяных пластинок (рис. 7.20). После отделения пластинок остается клетка, содержащая дольчатое ядро, окруженное узким ободком цитоплазмы, - резидуальный мегакариоцит, который затем подвергается разрушению. При уменьшении числа кровяных пластинок в крови (тромбоцитопения), например после кровопотери, отмечается усиление мегакариоцитопоэза, приво-

Рис. 7.20. Ультрамикроскопическое строение мегакариоцита (по Н. А. Юриной, Л. С. Румянцевой):

1 - ядро; 2 - гранулярная эндоплазматическая сеть; 3 - гранулы; 4 - комплекс Гольджи; 5 - митохондрии; 6 - гладкая эндоплазматическая сеть; 7 - альфа-гранулы; - лизосомы; 8 - инвагинация плазмолеммы; 9 - демаркационные мембраны; 10 - формирующиеся кровяные пластинки

дящее к увеличению количества мегакариоцитов в 3-4 раза с последующей нормализацией числа тромбоцитов в крови.

Моноцитопоэз

Образование моноцитов происходит из стволовых клеток костного мозга по схеме: СКК → КОЕ-ГЭММ → КОЕ-ГМ → унипотентный предшественник моноцита (КОЕ-М) → монобласт (monoblastus) → промоноцит → моноцит (monocytus). Моноциты из крови поступают в ткани, где являются источником развития различных видов макрофагов.

Лимфоцитопоэз и иммуноцитопоэз

Лимфоцитопоэз проходит следующие стадии: СКК → КОЕ-Л (лимфоидная родоначальная мультипотентная клетка) → унипотентные предшественники лимфоцитов (пре-Т-клетки и пре-В-клетки)→ лимфобласт (lymphoblastus) пролимфоцит → лимфоцит. Особенность лимфоцитопоэ-за - способность дифференцированных клеток (лимфоцитов) дедифферен-цироваться в бластные формы.

Процесс дифференцировки Т-лимфоцитов в тимусе приводит к образованию из унипотентных предшественников Т-бластов, из которых формируются эффекторные лимфоциты - киллеры, хелперы, супрессоры.

Дифференцировка унипотентных предшественников В-лимфоцитов в лимфоидной ткани ведет к образованию плазмобластов (plasmoblastus), затем проплазмоцитов, плазмоцитов (plasmocytus). Более подробно процессы образования иммунокомпетентных клеток описаны в главе 14.

Регуляция гемопоэза

Кроветворение регулируется факторами роста, обеспечивающими пролиферацию и дифференцировку СКК и последующих стадий их развития, факторами транскрипции, влияющими на экспрессию генов, определяющих направление дифференцировки гемопоэтических клеток, а также витаминами, гормонами.

Факторы роста включают колониестимулирующие факторы, интерлей-кины и ингибирующие факторы. Они являются гликопротеинами с молекулярной массой около 20 килодальтон. Гликопротеины действуют и как циркулирующие гормоны, и как местные медиаторы, регулирующие гемопоэз и развитие клеточных дифферонов. Они почти все действуют на СКК, КОЕ, коммитированные и зрелые клетки. Однако отмечаются индивидуальные особенности действия этих факторов на клетки-мишени.

Например, фактор роста стволовых клеток влияет на пролиферацию и миграцию СКК в эмбриогенезе. В постнатальном периоде на гемопоэз оказывают влияние несколько КСФ, среди которых наиболее изучены факторы, стимулирующие развитие гранулоцитов и макрофагов (ГМ-КСФ, Г-КСФ, М-КСФ), а также интерлейкины.

Как видно из табл. 7.1, мульти-КСФ и интерлейкин-3 действуют на поли-потентную стволовую клетку и большинство КОЕ. Некоторые КСФ могут действовать на одну или более стадий гемопоэза, стимулируя деление, диф-ференцировку клеток или их функцию. Большинство указанных факторов выделено и применяется для лечения различных болезней. Для получения их используются биотехнологические методы.

Большая часть эритропоэтина образуется в почках (интерстициальные клетки), меньшая - в печени. Его образование регулируется содержанием в крови О2, которое зависит от количества циркулирующих в крови эритроцитов. Снижение числа эритроцитов и соответственно парциального давления кислорода (Ро2) является сигналом для увеличения продукции эритропоэтина. Эритропоэтин действует на чувствительные к нему КОЕ-Э, стимулируя их пролиферацию и дифференцировку, что в конечном итоге приводит к повышению содержания в крови эритроцитов. К факторам роста для эритроидных клеток, кроме эритропоэтина, относится фактор бурст-промоторной активности (БПА), который влияет на БОЕ-Э. БПА образуется клетками ретикулоэндотелиальной системы. В настоящее время считают, что он является интерлейкином-3.

Тромбопоэтин синтезируется в печени, стимулирует пролиферацию КОЕ-МГЦ, их дифференцировку и образование тромбоцитов.

Ингибирующие факторы дают противоположный эффект, т. е. тормозят гемопоэз. К ним относятся липопротеины, блокирующие действие КСФ (лактофер-рин, простагландины, интерферон, кейлоны). Гормоны также влияют на гемопоэз. Например, гормон роста стимулирует эритропоэз, глюкокортикоиды, напротив, подавляют развитие клеток-предшественников.

Таблица 7.1. Гемопоэтические факторы роста (стимуляторы)

1 Нейтрофилы, эозинофилы, базофилы.

Витамины необходимы для стимуляции пролиферации и дифференцировки гемо-поэтических клеток. Витамин В12 потребляется с пищей и поступает с кровью в костный мозг, где влияет на гемопоэз. Нарушение процесса всасывания при различных заболеваниях может служить причиной дефицита витамина В12 и нарушений в гемопоэ-зе. Фолиевая кислота участвует в синтезе пуриновых и пиримидиновых оснований.

Таким образом, развитие кроветворных клеточных дифферонов протекает в неразрывной связи с микроокружением. Миелоидная и лимфоидная ткани являются разновидностями соединительной ткани, т. е. относятся к тканям внутренней среды. Ретикулоцитарный, адипоцитарный, тучнокле-точный и остеобластический диффероны вместе с межклеточным веществом (матриксом) формируют микроокружение для гемопоэтических диф-феронов. Гистологические элементы микроокружения и гемопоэтические клетки функционируют в неразрывной связи. Микроокружение оказывает воздействие на дифференцировку клеток крови (при контакте с их рецепторами или путем выделения специфических факторов). В миелоидной и лимфоидной тканях стромальные ретикулярные и гемопоэтические элементы образуют единое функциональное целое. В тимусе имеется сложная строма, представленная как соединительнотканными, так и ретикулоэпи-телиальными клетками. Эпителиальные клетки секретируют особые вещества - тимозины, оказывающие влияние на дифференцировку из СКК Т-лимфоцитов. В лимфатических узлах и селезенке специализированные ретикулярные клетки создают микроокружение, необходимое для пролиферации и дифференцировки в специальных Т- и В-зонах Т- и В-лимфоцитов и плазмоцитов.

Контрольные вопросы

1. Гемограмма, лейкоцитарная формула: определение, количественные и качественные характеристики у здорового человека.

2. Основные положения унитарной теории кроветворения А. А. Максимова. Перечислить свойства стволовой кроветворной клетки.

3. Эритропоэз, стадии, роль клеточного микроокружения в дифферен-цировке клеток эритробластического дифферона.

4. Агранулоциты: морфологические и функциональные характеристики.